cho tam giác ABC vuông tại A , AM là đường cao , kẻ ME vuông góc AB , MF vuông góc AC
. chứng minh AE.AB=AC^2 - AM^2
cho tam giác ABC cân tại A (A<90 độ), kẻ BM vuông CA. CMR:
AM/MC=2(AB/AC)^2 -1
Cho tam giác ABC vuông tại A, đường cao AH (HϵBC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE vuông góc AB (EϵAB). Chứng minh: AE.AB=AC2-HC2
c) Kẻ HF vuông góc AC (FϵAC). Chứng minh: AF=AE.tanC
Tam giác ABC vuông ở A; AB=AC; M thuốc AC sao cho MC:MA=1:3. Kẻ đường vuông góc AC tại C cắt BM ở K; kẻ BE vuông góc với đường CK ở E
a. ABEC là hình gì?
b. CM: \(\dfrac{1}{AB^2}=\dfrac{1}{BM^2}+\dfrac{1}{BK^2}\)
Cho tam giác ABC vuông tại A có BC = a, CA = b, AB = c, đường cao AH.
a) Chứng minh: \(1+tam^2B=\dfrac{1}{cos^2B};tan\dfrac{C}{2}=\dfrac{c}{a+b}\)
b) Chứng minh: AH = a. sin B. cos B, BH=a·cos2B, CH=a·sin2B
c) Lấy D trên cạnh AC. Kẻ DE vuông góc BC tại E. Chứng minh:
sinB=\(\dfrac{AB\cdot AD+EB\cdot ED}{AB\cdot BE+DA\cdot DE}\) (
Bài 1: Cho tam giác ABC vuông ở A có AB = 12cm, AC = 16cm.
a) Tính độ dài trung tuyến AM.
b) Kẻ đường cao AH. Tính chu vi tam giác ABH.
c) Tia phân giác của góc AMB và góc AMC cắt AB, AC lần lượt ở D và E. Chứng minh: tam giác ABC và ADE đồng dạng.
d)Tính: Sbdec và Sdme.
Cho tam ABC có góc A bằng 90 độ và đường cao AH ( H thuộc BC) kẻ HE và HF lần lượt vuông góc với AB và AC tại E,F
1, chứng minh AEHF là hcn và tính EF , CF
2, tính diện tích tứ giác AEHF
3, tính diện tích tứ giác BEFC
Bài 1: Cho tám giác ABC vuông ở A có AB = 12cm, AC = 16cm.
a) Tính độ dài trung tuyến AM.
b) Kẻ đường cao AH. Tính chu vi tam giác ABH.
c) Tia phân giác của góc AMB và góc AMC cắt AB, AC lần lượt ở D và E. Chứng minh: tam giác ABC và ADE đồng dạng.
d)Tính: SBDEC và SDME.
cho tam giác abc vuông tại a đường cao ah kẻ hd vuông góc ab he vuông góc ac a, chứng minh adhe là hình chữ nhật b, chứng minh da.db+ea.ec=hb.hc