a) Xét tứ giác AMCD có
I là trung điểm của đường chéo AC(gt)
I là trung điểm của đường chéo DM(do D và M đối xứng với nhau qua I)
Do đó: AMCD là hình bình hành(dấu hiệu nhận biết hình bình hành)
Ta có: AM là đường trung tuyến ứng với cạnh đáy BC của \(\Delta\)ABC cân tại A(gt)
nên AM cũng là đường cao ứng với cạnh BC(định lí tam giác cân)
\(\Rightarrow\)\(\widehat{AMC}=90^0\)
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)(cmt)
nên AMCD là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)Ta có: AM là đường trung tuyến ứng với cạnh đáy BC của \(\Delta\)ABC cân tại A(gt)
nên M là trung điểm của BC
Để hình chữ nhật AMCD là hình vuông thì AM=MC
mà \(MC=\frac{BC}{2}\)(do M là trung điểm của BC)
nên \(AM=\frac{BC}{2}\)
Xét \(\Delta\)ABC có
AM là đường trung tuyến ứng với cạnh BC(gt)
\(AM=\frac{BC}{2}\)(cmt)
Do đó: \(\Delta\)ABC vuông tại A(định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
\(\Rightarrow\)\(\widehat{BAC}=90^0\)
Vậy: Khi \(\Delta\)ABC vuông tại A có thêm điều kiện \(\widehat{BAC}=90^0\) thì hình chữ nhật AMCD là hình vuông