Bài 9: Hình chữ nhật

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luân Nguyễn Khoa

Cho tam giác ABC cân tại A đường cao AM gọi i là trung điểm ac, k là điểm đối xứng m qua i A. Chứng minh rằng tứ giác AMCK là hình chữ nhật B. Biết Ab=cm,BC=6cm tính diện tích tứ giác AKCM C. Từ i kẻ iH vuông góc AM Thuộc AM, chứng minh 3 điểm B,H,K thẳng hàng

Ngô Ngọc Tâm Anh
21 tháng 12 2021 lúc 16:29

a)Xét tứ giác AMCK ta có: IM=IK( vì M đối xứng với K qua I); IA=IC(vì I là trung điểm của AC).

Do đó: tứ giác AMCK là hình bình hành.

Mà ∠AMC=90 độ(vì AMlà đường trung tuyến của ΔABC cân tại A  nên đồng thời là đường cao, hay AM⊥BC). Suy ra: AMCK là h.c.n(đpcm)

b) Vì AMCK là h.c.n.(chứng minh trên) nên AC=MK.

Mà AB=AC(tính chất tam giác cân). Do đó: AB=MK(=AC) (đpcm).

c) Để AMCK là hình vuông thì AM=AK⇒ΔAMK cân tại A. Khi đó đường trung tuyến AI sẽ đồng thời là đường cao, hay AI⊥MK.

Mặt khác, ta có: AB=MK(chứng minh trên); AK=BM(=MC). Do đó: AKMB là hình bình hành.

Suy ra:AB║MK. Mà MK⊥AI.nên AB⊥AI⇒AB⊥AC. Ta lại có: tam giác ABC cân tại A.

vậy nên: để AMCK là hình vuông thì tam giác ABC vuông cân tại A.


Các câu hỏi tương tự
Luân Nguyễn Khoa
Xem chi tiết
Luân Nguyễn Khoa
Xem chi tiết
PHAM KHANH THI
Xem chi tiết
Quang Thắng
Xem chi tiết
huỳnh thị mỹ hương
Xem chi tiết
Lê Đại Hung
Xem chi tiết
Mai Dao xuan
Xem chi tiết
Lê Nguyễn Đình Nghi
Xem chi tiết
nguyen thao anh
Xem chi tiết