a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
Cho tam giác cân ABC(AB=AC), đường cao AH ,gọi E và F lần lượt là điểm trên AB và AK sao cho BE=CF .a,chứng minh E và F đối xứng nhau qua AH. b,Gọi O và giao điểm của EF và AH các tia BO, CO cắt AK ,AB lần lượt ở K và G chứng minh EK=GF
Cho tam giác ABC cân tại A,đường cao AH.Gọi E,F lần lượt là điểm nằm trên AB và AC sao cho BE=CF
a)Chứng minh E và F đối xứng nhau qua AH
b)Gọi O la giao điểm của EF và AH.Các tia BO,CO cắt AC,AB lần lượt tại K và H.Chứng minh EK=HF
Cho tam giác ABC cân tại A,đường cao AH.Gọi E,F lần lượt là điểm nằm trên AB và AC sao cho BE=CF
a)Chứng minh E và F đối xứng nhau qua AH
b)Gọi O la giao điểm của EF và AH.Các tia BO,CO cắt AC,AB lần lượt tại M và K.Chứng minh EK=MF
cho tam giác ABC cân tại A, đường cao AH. Gọi E,F là điểm trên AB, AC sao cho BE=CF
a) CM : F đối xứng vs E qua AH
b) gọi O là giao điểm của EF vs AH , các tia BO, CO cắt AC, AB tại K . CM : EK=FK
BT: Cho ΔABC cân ở A, đường cao AH. Gọi E và F lần lượt là điểm trên AB và AC sao cho BE=CF
a, C/m: E đối xứng với F qua AH
b, Gọi O là giao điểm của EF với AH. Các tia BO, CO cắt AC, AB lần lượt ở S và K. C/m: EK=SF
Cho tam giác ABC cân tại A,đường cao AI.Gọi E,F lần lượt là điểm nằm trên AB và AC sao cho BE=CF
a)Chứng minh E và F đối xứng nhau qua AI
b)Gọi O la giao điểm của EF và AI.Các tia BO,CO cắt AC,AB llaan lượt tại H và K.Chứng minh EK=HF
c)Chứng minh tứ giác BKHC là thang cân
Cho tam giác ABC cân tại A,đg cao AH .E,F lần lượt là điểm trên AB,AC sao cho BE=CF
a,cm E đối xứng vs F qua AH
b,Gọi O là giao điểm của EF vs AH.BO,CO cắt AC,AB lần lượt ở H và K.Cm EK=HF
Cho tam giác ABC có ba góc nhọn, kẻ đường cao AH. Gọi E,F là các điểm đối xứng của H qua cạnh AB, AC. Đoạn EF cắt AB, AC tại M,N. Chứng minh MC song song với EH, NB song song với FH
cho tam giác abc vuông tại a, đường cao ah. gọi d và e lần lượt là điểm đối xứng của điểm h qua ab và ac. a) chứng minh a là trung điểm de. b) tứ giác bdec là hình thang vuông c) cho bh = 2cm và ch = 8cm. tính ah và chu vi của hình thang vuông bdec
Nhanh lên mik cần câu c thôi ạ. Ai đó giúp mik với