Cho tam giác ABC cân tại A, đường cao AH. Gọi E là trung điểm AC, F là điểm đối xứng H qua E.
a, CM AFCH là hình chữ nhật.
b, Gọi O là trung điểm AH. CM B, O, F là 3 điểm thẳng hàng.
c, Gọi I là giao điểm BF, AC. CM IF = 2/3 OB.
d, Gọi M là hình chiếu E trên BC. Tam giác ABC cần điều kiện gì để OEMH là hình vuông?
a) Xét tứ giác AFCH có
E là trung điểm của đường chéo AC(gt)
E là trung điểm của đường chéo HF(gt)
Do đó: AFCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AFCH có \(\widehat{AHC}=90^0\)(gt)
nên AFCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: AFCH là hình chữ nhật(cmt)
nên AF//BH và AF=BH(Hai cạnh đối)(1)
Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra AF//BH và AF=BH
Xét tứ giác ABHF có
AF//BH(cmt)
AF=BH(cmt)
Do đó: ABHF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo AH và BF cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà O là trung điểm của AH(gt)
nên O là trung điểm của BF
hay B,O,F thẳng hàng(đpcm)