Cho tam giác ABC có AB = AC. Lấy điểm M là trung điểm của BC.
a) Chứng minh tam giác ABM = tam giác ACM.
b) Chứng minh AM là đường trung trực của BC.
c) Từ M vẽ MH vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm E sao cho H là trung điểm của ME. Chứng minh CA là tia phân giác của góc MCE.
d) Đường thẳng đi qua M và song song với CE cắt AE tại P. Chứng minh MP vuông góc với AE.
Bài 5: Cho tam giác ABC cân tại A. Vẽ AH vuông góc BC tại H.
a/ Chứng minh tam giác AHB bằng tam giác AHC và BH = HC.
b/ Cho biết AB = 13cm; BC = 10cm. Vẽ trung tuyến BM của tam giác ABC cắt AH tại G. Tính AH và AG.
c/ Vẽ trung tuyến CN của tam giác ABC. Chứng minh MN song song BC.
d/ Trên cạnh AB lấy điểm D (D nằm giữa N và B) và trên tia đối tia CA lấy điểm E sao cho BD = CE. Đường thẳng qua C song song với DE và đường thẳng qua D song song với AC cắt nhau tại F. Chứng minh tam giác DFB cân và FC > BC
1.Cho tam giác ABC có AB = AC, kẻ BD vuông góc AC, CE vuông góc AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD = CE
b. tam giác OEB = tam giác ODC
c. AO là tia phân giác của góc BAC
2.Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng không chứa C bờ là AB vẽ AD vuông góc AB và AD = AB. Trên nửa mặt phẳng không chưa B bờ là AC vẽ AE vuông góc AC và AE = AC. Lấy F thuộc tia đối của tia MA cho MF = MA. CMR:
a. BF song song AC
b. DE = 2AM
c. AM vuông góc DE
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
Cho tam giác ABC vuông tại A và AB nhỏ hơn AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Vẽ tia phân giác góc BAC cắt BC tại E.
a) Chứng minh tam giác AEB = tam giác AED
b) Gọi F là giao điểm của DE và tia AB. Chứng minh tam giác EBF = tam giác EDC
c) Gọi M là trung điểm của BD, chứng minh tam giác AMB = tam giác AMD
d) Chứng minh 3 điểm A, M, E thẳng hàng.
Cho tam giác ABC có AB<AC góc A= 60độ, AH là tia phân giác của góc BAC
a, tính số đo góc BAH
b, lấy điểm K thuộc cạnh AC sao cho AK= AB. CM: tam giác AHB= tam giác AHK
c,CM: AH vuông góc với BK
d, Qua H vẽ đường thẳng vuông góc với AH cắt AC tại N và tia AB tại Q
CM rằng: AH là đường trung trực của QN
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giÁc ABC(A là góc tù), trong góc BAC vẽ Ax và Ay theo thứ tự vuông góc với AC;AB. Trên à láy điểm E sao cho AE=AC, trên Ay lấy điểm M sao cho AM=AB. Đường cao AH của tam giác abc các EM tại H'. Đường cao AD của tam giác AEM cách BC tại D'. CHứng minh rằng:
a) tam giác AEH'= tam giác CAD'
b) AH' là trung tuyến của tam giác AEM