Hình bạn tự vẽ nha!
a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân) (1).
+ Vì \(DE\) // \(BC\left(gt\right)\)
=> \(\left\{{}\begin{matrix}\widehat{ADE}=\widehat{ABC}\\\widehat{AED}=\widehat{ACB}\end{matrix}\right.\) (vì các góc đồng vị) (2).
Từ (1) và (2) => \(\widehat{ADE}=\widehat{AED}.\)
=> \(\Delta ADE\) cân tại \(A.\)
b) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(AB=AC\) (tính chất tam giác cân).
+ Vì \(\Delta ADE\) cân tại \(A\left(cmt\right).\)
=> \(AD=AE\) (tính chất tam giác cân).
Xét 2 \(\Delta\) \(ABE\) và \(ACD\) có:
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\) chung
\(AE=AD\left(cmt\right)\)
=> \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
=> \(BE=CD\) (2 cạnh tương ứng).
c) Sửa lại đề là BE cắt CD ở O nhé.
+ Xét \(\Delta OBC\) có:
\(OB+OC>BC\) (theo bất đẳng thức trong tam giác) (3).
+ Xét \(\Delta ODE\) có:
\(OD+OE>DE\) (theo bất đẳng thức trong tam giác) (4).
Cộng theo vế (3) và (4)
\(\Rightarrow OB+OC+OD+OE>DE+BC\left(đpcm\right).\)
Chúc bạn học tốt!