Bài 2:
a: \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=9^2-4\cdot14=81-56=25\)
=>x-y=5 hoặc x-y=-5
b: \(x^2+y^2=\left(x+y\right)^2-2xy=9^2-2\cdot14=81-28=53\)
c: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot9\cdot14=351\)
Bài 2:
a: \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=9^2-4\cdot14=81-56=25\)
=>x-y=5 hoặc x-y=-5
b: \(x^2+y^2=\left(x+y\right)^2-2xy=9^2-2\cdot14=81-28=53\)
c: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=9^3-3\cdot9\cdot14=351\)
Cho tam giác ABC, các trung tuyến AM, BN, CP cắt nhau tại G. Qua C kẻ đườq // BN, cắt PN kéo dài tại F. Gọi E là trung điểm của NF.
CM: a, MN // CE
b, AE = PC
mn giúp e vs tói nay e cần r ạ
Cho tam giác ABC, các trung tuyến AM, BN, CP cắt nhau tại G. Qua C kẻ đườq // BN, cắt PN kéo dài tại F. Gọi E là trung điểm của NF.
CM: a, MN // CE
b, AE = PC
Bài 1: Cho tam giác đều ABC, trên cạnh BC lấy điểm M, kẻ MD song song với AC, kẻ ME song song với AB.
a) Chứng minh: tứ giác ADME là hình bình hành
b) Gọi O là trung điểm của DE. Chứng minh 3 điểm A,O,M thẳng hàng
c) Kẻ MI vuông góc với AB, Mk vuông góc với AC ( I thuộc AB,K thuộc AC). Tính số đo góc IOK.
Bài 2: Cho hình vuông ABCD có cạnh =4cm.Trên các cạnh AB,BC,CĐ,ĐÃ lấy theo thứ tự các điểm E,F,G,H sao cho AE=BF=CG=DH. Tính độ dài AE sao cho tứ giác EFGH có chu vi nhỏ nhất.
Bài 3: Cho x+y = 1. Tìm GTNN của M = x3 + y3 + 2xy
Giúp mình với m.n ơi,giải và vẽ ra cho mình với.mình cần gấp lắm,mai học rồi
Cho tam giác ABC vuông tại A .Gọi M,N lần lượt là trung điểm của AB, AC.
a) Chứng minh: Tứ giác BMNC là hình thang
b) BN và CM cắt nhau tại G. Gọi E và F lần lượt là trung điểm của BG và GC.Chứng minh : Tứ giác MNEF là hình bình hành
c) Tia AG cắt BC tại H.Chứng minh: Tứ giác AMHN là hình chữ nhật
d) Gọi K là điểm đối xứng với điểm M qua N và I là trung điểm của NH.
Chứng minh : HN,MC,BK đồng quy tại 1 điểm
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
1/ Cho tam giác ABC vuông tại A (AB < ABC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a/ Chứng minh tứ giác AMIN là hình chữ nhật
b, Gọ D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi
c, Cho AC=20cm, AC=25cm. Tính diện tích tam giác ABC
d, Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC = 1/3
2/ Cho tam giác ABC cân tại A, đường cao AH. Gọ M là trung điểm cảu AB, E là điểm đối xứng với H qua M.
a,Chứng minh tứ giác AHBE là hình chữ nhật
b, Chứng minh tứ giác AEHC là hình bình hành
c, Gọi N là trung điểm của AC. Chứng minh ba đường thẳng AH, CE và MN đồng quy
d,CE cắt AB tại K. Chứng minh rằng AB=3AK
cho tam giác ABC nhọn, 2 đường trung tuyến BM và CN cắt nhau tại I.Gọi E lvaf F là trung điểm của IB và IC
a) CM: Tứ giác MNEF là hình bình hành
b) CM: HE=NE/2
Cho hình bình hành ABCD, O là giao 2 đường chéo. E và F lần lượt là trung điểm OD và OB.
a) CM: AE // CF
b) Gọi K là giao của AE và DC. Cm DK = \(\frac{1}{2}\)KC
Cho tam giác ABC, trên AB lấy các điểm D và E sao cho AC = BE. Qua D và E vẽ các đường thẳng // với BC. Chúng cắt AC theo thứ tự tại M và N.
Chứng minh: DM + EN = BC
GIÚP MÌNH VỚI TỐI NAY MÌNH ĐI HỌC RỒI
Cho tam giác ABC . Gọi I là giao điểm của các đường phân giác trong của các góc của tam giác . từ I kẻ IM vuông góc AB , IN vuông góc với BC , IK vuông góc với AC . Qua A kẻ đường thẳng d1 song song MN , d1 cắt đường thẳng NK tại E . Qua a kẻ đường thẳng d2 cắt MN tại D . Đường thẳng ED cắt AC , AB lần lượt tại B và Q . CHỨNG MINH P, Q là đường trung bình của tam giác ABC
giúp đỡ nha mọi người