Cho tam giác ABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=AD
a)C/m tam giác ABM = tam giác DCM
b)C/m AB // DC
c)Kẻ BE vuông góc AM (E thuộc BC), CF vuông góc DM(F thuộc DM)
C/m M là trung điểm của đoạn thẳng EF
Cho tam giác ABC, AH vuông góc với BC (H thuộc BC). M là trung điểm của BC. Kéo dài AH lấy HE=HA, Kéo dài AM lấy MF=MA. CMR:
a)BE=CE
b)ME=MF
c)AC=BF
Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
Cho Δ ABC, góc A = 90, AB<AC, kẻ AH vuông góc với BC tại H. Lấy M thuộc tia HC sao cho BH = HN, kẻ CK vuông góc với đường thẳng AM( K thuộc tia AM)
Chứng minh tia CB la phân giác của góc ACKTìm điều kiện của ΔABC để AM=MCPhân giác của góc ABC cắt AH, AC lần lượt E và D lấy F thuộc tia đối của tia AE sao cho AD =AF. Tính góc DFC + góc DBC + góc FCB
Cho tam giác ABC với B=C . Kẻ AH vuông góc BC (h thuộc BC )
a) Chứng minh rằng :AB =AC
b) Trên tia đối của BC lấy điểm M , trên tia đối của BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho CN=BM . Chứng minh rằng M=N
Cho tam giác ABC ( AB = AC), AM là phân giác của góc BAC ( M thuộc BC)
a) CM: M là trung điểm của BC.
b) Trên tia đối của tia AB lấy E, trên tia đối của tia AC lấy điểm F sao cho AE = AF. CM: tam giác BCE = tam giác CBF
c) CM: ME = MF
d) Gọi N là trung điểm EF. CM: A, M, N thẳng hàng
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Cho tam giác ABC với AB < BC , kẻ AH vuông góc với BC . Trên tia đối của tia HB lấy điểm K sao cho HK = HB .
a. CM : Tam giác ABH = Tam giác AKH
b. Gọi M là trung điểm cạnh AC . Trên tia đối của tia MK lấy điểm E sao cho ME = MK . Chứng minh : EC = AB
c. CM : AE // BC