a: Xét ΔADB và ΔADE có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
DO đó: ΔADB=ΔADE
Suy ra: DB=DE
hay D nằm trên đường trung trực của BE(1)
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy ra AD là đường trung trực của BE
b: Xét ΔABC có AD là đường phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD
\(\widehat{AED}+\widehat{ECD}=180^0-\widehat{CED}+\widehat{ECD}< 180^0\)