Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho BM=AB.
Vẽ tia phân giác BD ( D thuộc cạnh AC ) của góc B, BD cắt AM tại H. Chứng minh rằng :
a) ∆ABH=∆MBH
b) Tia DB là tia phân giác của .
c) Kéo dài DM cắt AB tại k. Chứng minh AK=MC và BD ^ CK.
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
cho tam giác ABC có A=90 độ ,AB=3cm,AC=4cm
a,tính BC
b,so sánh góc B,C
c,kẻ tia phân giác góc C cắt AB tại I
từ I kẻ IH vuông góc với BC (H thuộc BC),AC cắt IH tại tại K chứng minh AK=BH
cho tam giác ABC vuông tại A,Tia phân giác của cắt AC tại D a) biết BCA=40 so sánh AC và AB b)giả sử AB=6cm AC=10 cm.Tính độ dài BC c)kẻ DE vuông góc với BC(e thuộc BC).Chúng minh tam giác ABE cân d)kéo dài cắt tia BA tại K.Chúng minh tam giác BDK=tam giác BDC e)trên tia đối của tia AD lấy điểm M sao cho AM=AD.Qua M kẻ đường thẳng d vuông góc với MB.Từ A kẻ AH vuông góc với đường thẳng d( thuộc d).G là trung điểm của BD.Chứng minh H,A,G thẳng
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Cho tam giác ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB (K thuộc AB). Kẻ BD vuông góc với tia AE (D thuộc tia AE). C/M:
a) AC = AK và AE vuông góc CK.
b) EA = EB
c) EB > AC.
Bài 11: Cho tam giác ABC vuông ở C có góc A bằng 600 . Tia phân giác của góc BAC cắt BC ở E. Kẻ EK AB ( K AB). Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh: a) AC = AK và AE CKb) KA = KB c) EB > ACd) Ba đường thẳng AC, BD, KE cùng đi qua một điểm.
cho`△ABC` có `AB<AC`.Tia p/g góc A cắt BC tại D.Trên AC lấy M sao cho `AB=AM`.
C/m a)`△ABD=△AMD`
b)so sánh`BD`và`DC`
c)Trên tia đối của BA lấy N sao cho`BN=NC` C/m`M,D,N` thẳng hàng và `BM//NC`