Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
Cho tam giác ABC, AB<AC có 3 góc nhọn nội tiếp đường tròn (O), gọi I là tâm đường tròn nội tiếp, tia AI cắt (O) tại D, AD cắt BC tại J
a) DI2=DJ.DA
b) Kẻ đường kính DE của (O), đường thẳng AE cắt BI và CI lần lượt tại F và H. C/m E là trung điểm FH.
c) Lấy điểm K thuộc cung nhỏ BC của đường tròn (O), M là điểm đối xứng của I qua K, N là giao điểm của BH và CF. C/m H,F,M,N thuộc 1 đường tròn
tam giác ABC nhọn nội tiếp (O) có 3 đường cao AD , BE , CF cắt nhau tại H và cắt (O) lần lượt tại M , N , P . Gọi K là điểm đối xứng của D qua đường thẳng AB.
a) cmr : tứ giác BFEC nội tiếp
b) cmr : DH = DM
c) cmr : E , F , K thẳng hàng
d) \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CP}{CF}=4\)
Cho tam giác ABC (AB<AC) nhọn nội tiếp đường tròn tâm O. Đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của BE và CF.Đường thẳng đi qua F song song với AC cắt AK , AD lần lượt tại M,N. Chứng minh MF=NF
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
( Làm mỗi câu c hộ mình thoi ạ)
Cho tam giác ABC vuông tại A (AB<AC) đường cao AH . Đường tròn tâm I đường kính AH cắt các đoạn AB,AC lần lượt tại M,N . Gọi O là trung điểm của BC , D là giao điểm của MN và OA
1. Cmr
a. AM.AB=AN.AC
b. Tg BMNC nội tiếp
2. Cmr
a. tam giác ADI đồng dạng tg AHO
b. 1/AD=1/HB+1/HC
3. Gọi P là giao điểm của BC và MN , K là giao điểm thứ hai của AP và đường tròn đường kính AH . Cmr góc BKC=90
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn O , hai đường cao BE,CF cắt nhau tại H . Tia AO cắt đường tròn O tại D
a, Cmr các điểm B,C,E,F thuộc 1 đường tròn
b, Cmr tứ giác BHCD là hình bình hành
c, Gọi M là trung điểm của tia BC, tia AM cắt HO tại G. Cmr G là trọng tâm tam giác ABC