cho tam giác ABC có AB= 2 cm; AC= 4 cm. Qua B dựng đường thẳng cắt đoạn AC tại D sao cho ABD=ACB
a) Chứng minh tam giác ABD đồng dạng với tam giác ACB
b) Tính AD,DC
c) gọi AH là đường cao của tam giác ABC, AE là đườngcao của tam giác ABD. Chứng tỏ SABH=4 SADE
cho tam giác ABC có AB= 2 cm; AC= 4 cm. Qua B dựng đường thẳng cắt đoạn thẳng AC tại D sao cho ABD=ACB
a) Chứng minh tam giác ABD đồng dạng với tam giác ACB
b) Tính AD, DC
c) Gọi AH là đường cao của tam giác ABC, AE là đường cao của tam giác ABD. Chứng tỏ SABH=4 SADE
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
Bài 1 : Cho tam giác ABC có ba góc nhọn , kẻ hai đường cao BD và CE . Gọi M , N lần lượt là hình chiếu của B,C trên đường thẳng DE
1.Tứ giác BMNC là hình gì?Vì sao
2.Gọi O là trung điểm của đoạn thẳng BC. CMR tam giác DOE là tam giác cân
3.Gọi P là trung điểm của đoạn thẳng DE . CMR \(OP=\dfrac{BM+CN}{2}\)
Bài 2 : Tìm số nguyên tố p để \(p^3+p^2+11p+2\) là số nguyên tố
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.
Cho tam giác ABC có \(\widehat{A}=90^0\) và AH là đường cao. Gọi D là điểm đối xứng với H qua AB , E là điểm đối xứng với H qua AC . Gọi I là giao diểm của AB và DH , K là giao điểm của AC và HE
Gỉa sử AB = 6cmc , AC =8cm . Tính IK
Cho hình thang ABCD vuông có A=D=90 độ. Hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại I. Chứng minh
a, tam giác ABD đồng dạng với tam giác DAC. Suy ra AD2=AB. DC
b, Gọi E là hình chiếu vuông góc của B lên cạnh DC và O là trung điểm của BD. Chứng minh điểm A,O,E thẳng hàng
c, Tính tỉ số diện tích hai tam giác AIB và DIC