Ta có: \(\overline{ab}\text{⋮}17\)
\(\Rightarrow\left(10a+b\right)\text{⋮}17\)
\(\Rightarrow2\left(10a+b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b\right)\text{⋮}17\)
Giả sử \(\left(3a+2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b\right)-\left(3a+2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b-3a-2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a-3a\right)+\left(2b-2b\right)\text{⋮}17\)
\(\Rightarrow17a\text{⋮}17\left(đú\text{ng}\right)\)
Vậy điều giả sử là đúng, nghĩa là \(\left(3a+2b\right)\text{⋮}17\) (đpcm)