Giải:
Vì p là số nguyên tố lớn hơn a nên p là số lẻ
\(\Rightarrow\) ( p + 2015 ).( p + 2017 )\(⋮\)8 (1)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 ( k thuộc N* )
+) Với p = 3k + 1
\(\Rightarrow\) ( p + 2015 ).( p + 2017 ) = ( 3k + 2016 ).( 3k + 2018 ) \(⋮\)3 ( vì 3k\(⋮\)3; 2016\(⋮\)3 ở số đầu tiên ) (2)
+) Với p = 3k + 2
\(\Rightarrow\) ( p + 2015).(p + 2017 ) = ( 3k + 2017 ).( 3k + 2019 )\(⋮\)3 ( Vì 3k\(⋮\)3; \(2019⋮3\)nên số thứ 2 \(⋮3\)) (3)
Từ (1);(2) và (3) suy ra ( p + 2015).( p + 2017 )\(⋮\)24
\(\Rightarrowđpcm\)