Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngô thị kiều trang

cho PT (m +1) x2 +2mx +m -1 =0

tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1x2 sao cho x12 + x22 =5

Mysterious Person
25 tháng 12 2017 lúc 6:32

ta có : \(\Delta'=\left(m\right)^2-\left(m+1\right)\left(m-1\right)=m^2-\left(m^2-1\right)\)

\(=m^2-m^2+1=1>0\forall m\) \(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\) (1)

áp dụng hệ thức vi ét cho phương trình đầu ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{m+1}\\x_1x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)

thay vào (1) ta có : \(\left(\dfrac{-2m}{m+1}\right)^2-2\left(\dfrac{m-1}{m+1}\right)=5\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-2\dfrac{m-1}{m+1}=5\)

\(\Leftrightarrow\dfrac{4m^2-2\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^2}=5\Leftrightarrow\dfrac{4m^2-2\left(m^2-1\right)}{\left(m+1\right)^2}=5\)

\(\Leftrightarrow\dfrac{4m^2-2m^2+2}{\left(m+1\right)^2}=5\Leftrightarrow4m^2-2m^2+2=5\left(m+1\right)^2\)

\(\Leftrightarrow2m^2+2=5\left(m^2+2m+1\right)\Leftrightarrow2m^2+2=5m^2+10m+5\)

\(\Leftrightarrow5m^2+10m+5-2m^2-2=0\Leftrightarrow3m^2+10m+3=0\)

\(\Leftrightarrow3m^2+m+9m+3=0\Leftrightarrow m\left(3m+1\right)+3\left(3m+1\right)=0\)

\(\Leftrightarrow\left(m+3\right)\left(3m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m+3=0\\3m+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{-1}{3}\end{matrix}\right.\)

vậy \(m=-3;m=\dfrac{-1}{3}\) là thỏa mãn điềm kiện bài toán


Các câu hỏi tương tự
Lê Thanh Tuyền
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
Huỳnh Thị Thanh Trâm
Xem chi tiết
btkho
Xem chi tiết
Kinder
Xem chi tiết
Lê Thanh Tuyền
Xem chi tiết
DuaHaupro1
Xem chi tiết