ta có : \(\Delta'=\left(m\right)^2-\left(m+1\right)\left(m-1\right)=m^2-\left(m^2-1\right)\)
\(=m^2-m^2+1=1>0\forall m\) \(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
ta có : \(x_1^2+x_2^2=5\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\) (1)
áp dụng hệ thức vi ét cho phương trình đầu ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2m}{m+1}\\x_1x_2=\dfrac{m-1}{m+1}\end{matrix}\right.\)
thay vào (1) ta có : \(\left(\dfrac{-2m}{m+1}\right)^2-2\left(\dfrac{m-1}{m+1}\right)=5\Leftrightarrow\dfrac{4m^2}{\left(m+1\right)^2}-2\dfrac{m-1}{m+1}=5\)
\(\Leftrightarrow\dfrac{4m^2-2\left(m-1\right)\left(m+1\right)}{\left(m+1\right)^2}=5\Leftrightarrow\dfrac{4m^2-2\left(m^2-1\right)}{\left(m+1\right)^2}=5\)
\(\Leftrightarrow\dfrac{4m^2-2m^2+2}{\left(m+1\right)^2}=5\Leftrightarrow4m^2-2m^2+2=5\left(m+1\right)^2\)
\(\Leftrightarrow2m^2+2=5\left(m^2+2m+1\right)\Leftrightarrow2m^2+2=5m^2+10m+5\)
\(\Leftrightarrow5m^2+10m+5-2m^2-2=0\Leftrightarrow3m^2+10m+3=0\)
\(\Leftrightarrow3m^2+m+9m+3=0\Leftrightarrow m\left(3m+1\right)+3\left(3m+1\right)=0\)
\(\Leftrightarrow\left(m+3\right)\left(3m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}m+3=0\\3m+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{-1}{3}\end{matrix}\right.\)
vậy \(m=-3;m=\dfrac{-1}{3}\) là thỏa mãn điềm kiện bài toán