Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huy Tran Tuan

Cho phương trình:x2-2(m-1)x+m2-2m=0 (m là tham số)

a,Giải phương trình với m=3

b,Tìm m để phương trình có 1 nghiệm x=-2.Với m tìm được hãy tìm nghiệm còn lại của phương trình

c,Tìm m để phương trình có 2 nghiệm x1 và x2 thỏa mãn:x12+x22=4

Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 21:45

a: Thay m=3 vào pt, ta được:

\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)

\(\Leftrightarrow x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>x=1 hoặc x=3

b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)

\(=4m^2-8m+4-4m^2+8m=4>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Thay x=-2 vào pt, ta được:

\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)

\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)

\(\Leftrightarrow m^2-2m+4+4m-4=0\)

=>m(m+2)=0

=>m=0 hoặc m=-2

Theo hệ thức Vi-et, ta được:

\(x_1+x_2=2\left(m-1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)

c: \(x_1^2+x_2^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)

\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)

\(\Leftrightarrow2m^2-4m=0\)

=>2m(m-2)=0

=>m=0 hoặc m=2


Các câu hỏi tương tự
Thịnh Nguyễn Tấn
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Chan
Xem chi tiết
Chan
Xem chi tiết
Kim Taehyungie
Xem chi tiết
Phùng Đức Hậu
Xem chi tiết
Anh Quynh
Xem chi tiết
Ha Ngoc Thao
Xem chi tiết
đặng tấn sang
Xem chi tiết