Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
fghj

cho phương trình \(x^4-2mx^2+2m+6=0\). Tìm giá trị của m để phương trình có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) sao cho \(x_1< x_2< x_3< x_4\)\(x_4-2x_3+2x_2-x_1=0\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 19:05

Đặt \(x^2=t\ge0\Rightarrow t^2-2mt+2m+6=0\) (1)

Để pt đã cho có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt

\(\Rightarrow\left\{{}\begin{matrix}\Delta'=m^2-2m-6>0\\t_1+t_2=2m>0\\t_1t_2=2m+6>0\end{matrix}\right.\) \(\Rightarrow m>\sqrt{7}+1\)

Giả sử (1) có 2 nghiệm dương \(0< t_1< t_2\)\(\Rightarrow\left[{}\begin{matrix}x^2=t_1\\x^2=t_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=-\sqrt{t_2}\\x_2=-\sqrt{t_1}\\x_3=\sqrt{t_1}\\x_4=\sqrt{t_2}\end{matrix}\right.\) \(\Rightarrow\sqrt{t_2}-2\sqrt{t_1}-2\sqrt{t_1}+\sqrt{t_2}=0\)

\(\Leftrightarrow\sqrt{t_2}=2\sqrt{t_1}\Rightarrow t_2=4t_1\)

Kết hợp Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m\\t_2=4t_1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}t_1=\frac{2m}{5}\\t_2=\frac{8m}{5}\end{matrix}\right.\)

\(t_1t_2=2m+6\Rightarrow\frac{16m^2}{25}=2m+6\)

\(\Rightarrow16m^2-50m-150=0\Rightarrow\left[{}\begin{matrix}m=5\\m=-\frac{15}{8}\left(l\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Cố Gắng Hơn Nữa
Xem chi tiết
Mai Huyền My
Xem chi tiết
Hoàng Vy Oanh
Xem chi tiết
abcd
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Nguyễn Huy Đạt
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
dam thu a
Xem chi tiết
dam thu a
Xem chi tiết