\(\Delta'=\left(m+1\right)^2-\left(4m-m^2\right)=2m^2-2m+1>0\) \(\forall m\)
Phương trình luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=-m^2+4m\end{matrix}\right.\)
\(A=\left|x_1-x_2\right|>0\)
\(\Leftrightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(\Leftrightarrow A^2=4\left(m+1\right)^2-4\left(-m^2+4m\right)\)
\(\Leftrightarrow A^2=8m^2-8m+4=2\left(2m-1\right)^2+2\ge2\)
\(\Rightarrow A\ge\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(m=\frac{1}{2}\)