Tìm tất cả các giá trị của m để phương trình \(x^2-\left(m-1\right)x+\left(m+3\right)=0\) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
Tìm giá trị của m sao cho phương trình: \(x^2+\left(2m-1\right)x+m=0\) có hai nghiệm phân biệt x1, x2 thỏa mãn x2 = 2x1.
cho phương trình x2-2(m+1)x+4m2-2m-2=0 ,m là tham số. Tìm m để phương trình
a. có 2 nghiệm phân biệt
b. có 2 nghiệm phân biệt dương
Cho phuong trình bậc hai ax2 + bx+ c =0 có hai nghiệm x1,x2 deu khác 0 . Phương trình bậc hai nhận 2x1 và 2x2 làm nghiệm là:
Cho phương trình x2 - (3m+1)x + 3m = 0 . Để phương trình này có hai nghiệm đều lớn hơn 1/2 thì m bằng :
1. Tính tổng tất cả các giá trị của tham số thực m sao cho pt : mx2 -2mx-2m-1 = 0 co hai nghiệm phân biệt x1 , x2 thỏa mãn x12 + 2x1x2+3x22 = 4x1 +5x2 -1
Tìm tổng bình phương các nghiệm của phương trình \(\left(x-1\right)\left(x-3\right)+3\sqrt{x^2-4x+5}-2=0\)
giả sử x1 ,x2 là nghiệm của phương trình 2x2-11x+13
Tính x14 - x24
\(\dfrac{x1}{x2}\) (1-x2)2+\(\dfrac{x2}{x1}\) (1-x1)2
Xác định giá trị của tham số m để 2 phương trình sau có chung nghiệm
(1): 3mx+1=2(m-x)
(2): (5x-1)m= 2x+1