1) tìm m để phương trình 2sinx+mcosx=1-m có nghiệm x thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
2) tìm nghiệm của phương trình : \(sinx^24x+3.sin4x.cos4x-4.cos^24x=0\) khoảng \(\left(0;\frac{\pi}{2}\right)\)
3) tìm tất cả các nghiệm của phương trình cos5x.cosx= cos4x.cos2x+ \(3cos^2x+1\) thuộc khoảng \(\left(-\pi;\pi\right)\)
4) tìm tất cả các nghiệm trong khoảng (\(\frac{2\pi}{5};\frac{6\pi}{7}\)) của phương trình: \(\sqrt{3}sin7x-cos7x=\sqrt{2}\)
Cho phương trình \(\left(cosx+1\right)\left(4cos2x-mcosx\right)=msin^2x\) . Số các giá trị nguyên của m để phương trình có đúng 2 nghiệm thuộc \(\left[0;\dfrac{2\pi}{3}\right]\) là
1) tìm tất cả các nghiệm của phương trình:\(sin3x-\frac{2}{\sqrt{3}}sin^2x=2sinx.cos2x\) thuộc đoạn \(\left[0;2\pi\right]\)
2) tìm nghiệm của phương trình: \(sin^2x+sin^22x+sin^23x=\frac{3}{2}\) trong khoảng \(\left(\frac{-\pi}{2};\frac{\pi}{2}\right)\)
3) tìm nghiệm của phương trình: \(sin2x+sinx-\frac{1}{2sinx}-\frac{1}{2sinx}=2cot2x\) trong khoảng (0;\(\pi\))
4) phương trình cos22x+3cos18x+3cos14x+cos10x=0 có bao nhiêu nghiệm thuộc khoảng (0;\(\frac{\pi}{2}\))
1) tìm nghiệm của phương trình: \(\frac{cos4x}{cos2x}=tan2x\) trong khoảng \(\left(0;\frac{\pi}{2}\right)\)
2) tìm tất cả các nghiệm của phương trình: sin8x+cos4x=1+2sin2x.cos6x thuộc \(\left(-\pi;\pi\right)\)
3) tìm tất cả các nghiệm của phương trình: \(\frac{\sqrt{3}sin3x-2sinx.sin2x-cosx}{sinx}=0\) thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)
4) tìm tất cả các nghiệm của phương trình: sinx+ sin2x+ sin3x=0 thuộc \(\left(0;\pi\right)\)
Cho phương trình (1-Sinx)(Cos2x + 3mSinx+Sinx-1)=\(mCos^2x\) (m là tham số). Tìm các giá trị thực của m để phương trình có 6 nghiệm khác nhau thuộc khoảng \(\left(-\dfrac{\Pi}{2};2\Pi\right)\)
Bài 1: Cho phương trình: acos2x + sinx = cosx.cotx tìm a để pt có 4 nghiệm thuộc khoảng (0; 2π)
Bài 2: Tìm m để pt cos3x - cos2x + mcosx - 1 = 0 có đúng 7 nghiệm khác nhau thuộc khoảng \(-\frac{\pi}{2}< x< 2\pi\)
Bài 3: Cho hàm số \(y=\frac{cos2x+a}{sin2x+2}\) (với a là tham số)
a, với a=1 tìm GTLN,NN của hàm số
b, tìm a để GTLN của hàm số đạt nhỏ nhất
Cho phương trình:
cos2\(x\) - (2m+1)cos\(x\) + m + 1 = 0
a) Tìm m để phương trình có 3 nghiệm thuộc \(\left[\frac{-\pi}{2};\pi\right]\)
b) Tìm m để phương trình có 5 nghiệm phân biệt thuộc \(\left(0;\frac{5\pi}{2}\right)\)
cầu cao nhân giúp mình với :(( 1 trong 2 câu thui (=^x^=) mình cảm ơn!
Có bao nhiêu giá trị nguyên của tham số m để phương trình : cos3x-cos2x+mcosx=1 có đúng 7 bảy nghiệm khác nhau thuộc khoảng \(\left(-\frac{\pi}{2};2\pi\right)\) ?
Tìm nghiệm của pt:
1) \(2cos2x+\sqrt{2}cos\frac{\pi}{4}=0\) thuộc khoảng (0;2π)
2) \(sin4x-cos4x+\sqrt{2}cos\left(4x-\frac{\pi}{4}\right)=\sqrt{6}\) thuộc khoảng (-π;5π)