Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1x_2=\dfrac{-3}{2}\end{matrix}\right.\)
Ta có: \(\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}\)
\(=\dfrac{2x^2_2+2x_1^2}{\left(x_1\cdot x_2\right)^2}\)
\(=\dfrac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}{\left(-\dfrac{3}{2}\right)^2}=\dfrac{2\cdot\left[\left(-3\right)^2-2\cdot\dfrac{-3}{2}\right]}{\dfrac{9}{4}}\)
\(=\dfrac{2\cdot12}{\dfrac{9}{4}}=24\cdot\dfrac{4}{9}=\dfrac{96}{9}=\dfrac{32}{3}\)