Ta có: \(x\left(3x-4\right)=2x^2+5\)
\(\Leftrightarrow3x^2-4x-2x^2-5=0\)
\(\Leftrightarrow x^2-4x-5=0\)(1)
a=1; b=-4; c=-5
Vì ac=-5<0 nên phương trình (1) có hai nghiệm phân biệt trái dấu
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1\cdot x_2=-5\end{matrix}\right.\)
Ta có: \(A=2\left(x_1-x_2\right)^2+3x_1x_2\)
\(=2\cdot\left(x_1+x_2\right)^2-4\cdot x_1\cdot x_2+3x_1\cdot x_2\)
\(=2\cdot4^2-4\cdot\left(-5\right)+3\cdot\left(-5\right)\)
\(=32+20-15=37\)
\(x(3x-4)=2x^2+5\\\leftrightarrow 3x^2-4x-2x_2-5=0\\\leftrightarrow x^2-4x-5=0\)
Theo Viét
\(\begin{cases}x_1+x_2=4\\x_1x_2=-5\end{cases}\)
\(A=2(x_1-x_2)^2+3x_1x_2\\=2(x_1^2-2x_1x_2+x_2^2)+3x_1x_2\\=2[(x_1+x_2)^2-4x_1x_2]+3x_1x_2\\=2.[4^2-4.(-5)]+3.(-5)\\=2.36-15\\=57\)
Vậy \(A=62\)