\(\dfrac{x^2-10x+25}{x^2-5x}=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
a/ Phân thức bằng 0 <=> x - 5 = 0
<=> x = 5
b/ \(\dfrac{x-5}{x}=\dfrac{5}{2}\Leftrightarrow\left(x-5\right).2=5x\)
\(\Leftrightarrow2x-10=5x\)
\(\Leftrightarrow2x-5x=10\)
\(\Leftrightarrow-3x=10\)
\(\Leftrightarrow x=-\dfrac{10}{3}\)
c/ Để \(\dfrac{x-5}{x}\in Z\) \(\Leftrightarrow\dfrac{x}{x}-\dfrac{5}{x}\in Z\)
\(\Leftrightarrow1-\dfrac{5}{x}\in Z\)
\(\Leftrightarrow\dfrac{5}{x}\in Z\)
\(\Leftrightarrow x\inƯ\left(5\right)\)
\(\Leftrightarrow x\in\left\{-5;-1;1;5\right\}\)
mà x nguyên nên \(x\in\left\{1;5\right\}\)