a/ Bạn tự giải
b/ Phương trình hoành độ giao điểm:
\(x^2-2x+m-3=0\)
\(\Delta'=1-m+3=4-m\ge0\Rightarrow m\le4\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1x_2\left(y_1+y_2\right)=-6\)
\(\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)=-6\)
\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-6\)
\(\Leftrightarrow\left(m-3\right)\left(4-2\left(m-3\right)\right)=-6\)
\(\Leftrightarrow\left(m-3\right)\left(5-m\right)+3=0\)
\(\Leftrightarrow-m^2+8m-12=0\Rightarrow\left[{}\begin{matrix}m=6>4\left(l\right)\\m=2\end{matrix}\right.\)