cho parabol (P) y=\(\dfrac{x^2}{2}\) và đường thẳng (d) y=mx-m+2
a, tìm m để (d) cắt (P) tại điểm có hoành độ =4
b, cmr với mọi m (d) luôn cắt (P) tại 2 điểm phân biệt
Cho (P) y=2.\(x^2\) và (d) y=mx+1
Tìm m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(^{^SAOB}\) = \(\dfrac{3m}{2}\)
Bài 1: Cho A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) với \(x\ge0,x\ne4\)
a) Rút gọn và tìm các giá trị của x để A=2
b) Tìm x sao cho A<1
bài 2: Cho (P): \(y=x^2\) và (d): y=x+m-4. Tìm m để d cắt P tại 2 điểm phân biệt có hoành độ tương ứng là x1, x2 sao cho \(x1^2+x2^2=10\)
Bài 3: Cho nửa đường tròn tâm O đường kính AB. M là 1 điểm bất kỳ thuộc nửa đường tròn ( M khác A,B), gọi N là điểm trên cung AM ( N khác A, M và MN không song song AB). Đường thẳng AN cắt BM ở K, AM cắt BN ở I, KI cắt AB ở H.
a) Chứng minh KNIM nội tiếp và KI vuông góc AB.
b) CM KN.KA= KM.KB
c) Cm \(\widehat{MHN}=\widehat{NAM}+\widehat{NBM}\) và \(\widehat{MON}=\widehat{NHM}\)
d) Gọi giao của KH với nửa đường tròn là E, giả sử KH = 4cm, HI= 1cm. Tính KE?
Cho (P) y=\(x^2\) và (d) y=mx-2
Tìm m để (d) cắt (P) tại hai điểm phân biệt A,B sao cho \(s_{OAB}\)= 1 (đvdt)
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
Cho (P) y=\(x^2\) và (d) y = mx+1
Tìm m để (d) cắt (P) tại 2 điểm phân biệt A,B sao cho \(S_{AOB}\) nhỏ nhất
Cho parabol (P) y = x2 và đường thẳng (d) y = mx – m + 1 (m là tham số)
a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt .
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho \(\left|x_A-x_B\right|< 3\) .
Biết xA và xB lần lượt là hoành độ giao điểm của hai điểm A, B.
Cho parabol (P) y = x2 và đường thẳng (d) y = mx – m + 1 (m là tham số)
a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt .
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho \(|x_A-x_B|< 3\) .
Biết xA và xB lần lượt là hoành độ giao điểm của hai điểm A, B.
Cho parabol (P) y = - x ^ 2 và đường thẳng (d) y = mx - 2 Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 và x2 thỏa mãn (x_{1} + 2)(x_{2} + 2) = 0