Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
AyE

cho p và 10p+1 nguyên tố lớn hơn 3, chứng minh 17p+1 là hợp số

Lucy Heartfilia
9 tháng 8 2017 lúc 9:26

Ta có :

p có dạng 3k , 3k+1 , 3k+2

* Nếu p = 3k+1 => p+1 = 10 ( 3k + 1 ) + 1 = 30k+10+1= 30k+11 ( Thoả mãn )

*Nếu p = 3k+2 => p + 1 = 10( 3k + 2 ) + 1 = 30k+20+1 = 30k+21 ( lớn hơn 3 và chia hết cho 3 ) => p+1 là hợp số
=> Không có trường hợp p = 3k+2

Với p= 3k1 +1 => 17p+1 = 17 ( 3k+1 ) + 1 = 51k + 17 + 1 = 51k + 18 ( Lớn hơn 3 và chia hết cho 3 ) => 17p+1 là hợp số

Vậy 17p+1 là hợp số ( đpcm )

Ánh Right
15 tháng 8 2017 lúc 9:11

p là số nguyên tố, p>3 => p không chia hết cho 3, lại có (10;3)=1 => 10p không chia hết cho 3 (1)

10p+1 là số nguyên tố, 10p+1>3 => 10p+1 không chia hết cho 3 (2)

Ta có: 10p(10p+1)(10p+2) là tích 3 số tự nhiên liên tiếp => 10p(10p+1)(10p+2) chia hết cho 3 (3)

Từ (1),(2),(3) => 10p+2 chia hết cho 3 <=> 2(5p+1) chia hết cho 3

Mà (2;3)=1 Nên 5p+1 chia hết cho 3 (*)

p là số nguyên tố, p>3 => p lẻ => 5p lẻ => 5p+1 chẵn => 5p+1 chia hết cho 2 (**)

Ta có: (2;3)=1 (***)

Từ (*),(**),(***) => 5p+1 chia hết cho 6.


Các câu hỏi tương tự
Phạm Ngọc Anh
Xem chi tiết
Aries
Xem chi tiết
Vũ Ngọc Đăng Khoa
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Yến Nhi Lê Thị
Xem chi tiết
Khánh Linh
Xem chi tiết
Lê Ánh Huyền
Xem chi tiết
Yến Nhi Lê Thị
Xem chi tiết
Thần đồng
Xem chi tiết