Lời giải:
Vì \(\sqrt{x}\geq 0, \forall x\geq 0\) nên \(\sqrt{x}+1>0; \sqrt{x}+2>0\Rightarrow P>0\)
Mặt khác:
\(P=\frac{\sqrt{x}+1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-1}{\sqrt{x}+2}=1-\frac{1}{\sqrt{x}+2}<1\) do \(\frac{1}{\sqrt{x}+2}>0\)
Vậy \(0< P< 1\)
\(\Rightarrow P-P^2=P(1-P)>0\)
\(\Rightarrow P>P^2\)