Cho hình thang vuông ABCD có các đáy AB=2a, CD=3a, cạnh AD=a. Trên hình vẽ hãy xác định các vecto cùng phương với nhau. Từ đó:
a, Tính độ dài các vecto \(\overrightarrow{AC},\overrightarrow{BC},\overrightarrow{AM},\overrightarrow{BM}\) Với M là hình chiếu vuông góc hạ từ B lên CD
b, Dựa vào quy tắc hình bình hành hãy xác định các vecto \(2\overrightarrow{AD}+\overrightarrow{AB}\) , \(\overrightarrow{BD}+\overrightarrow{BC}\)
Cho \(\Delta ABC\), gọi M là trung điểm của AC và N là điểm đối xứng của B qua M. Xác định các vecto sau:
a, \(\overrightarrow{AB}+\overrightarrow{AN}\)
b, \(\overrightarrow{BA}+\overrightarrow{CN}\)
c, \(\overrightarrow{AB}+\overrightarrow{MC}+\overrightarrow{MN}\)
d, \(\overrightarrow{BA}+\overrightarrow{BC}-\overrightarrow{MN}\)
Can you help me?
please, luv u (tymtymtym)
1/ cho lục giác đều ABCDEF , có tâm O . Đẳng thức nào sau đây đúng :
A \(\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OE}=0\)
B. \(\overrightarrow{BC}+\overrightarrow{EF}=\overrightarrow{AD}\)
C. \(\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}=\overrightarrow{EB}\)
D.\(\overrightarrow{AB}+\overrightarrow{CD}=0\)
Cho △ABC có trọng tâm G và 2 điểm M, N sao cho: AB = 3AM; CD = 2CN
a) Chứng minh: 3 điểm M, N, G thẳng hàng
b) Biểu diễn \(\overrightarrow{AC}\) qua 2 vecto \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\)
c) Gọi k là giao điểm của AC và GN. Tính tỉ số \(\dfrac{KA}{KB}\)
Cho hình bình hành ABCD. Hãy xác định các vecto bằng nhau. Gọi O là giao điểm của 2 đường chéo. Đường thằng qua O cắt 2 cạnh AB và CD theo thứ tự tại E và F. CMR:
\(\overrightarrow{OE}+\overrightarrow{OF}=0\)
\(\overrightarrow{AE}+\overrightarrow{CF}=0\)
\(\overrightarrow{DE}+\overrightarrow{BF}=0\)
Cho tứ giác ABCD gọi M , N lần lượt là trung điểm của AD,BC ; gọi I và J lần lượt là trung điểm của AC , BD .CMR :
a) \(\overrightarrow{AB}+\overrightarrow{DC}=2\overrightarrow{MN}\) b) \(\overrightarrow{AB}+\overrightarrow{CD}=2.\overrightarrow{IJ}\) c) \(\overrightarrow{MN}+\overrightarrow{IJ}=\overrightarrow{AB}\) d) \(\overrightarrow{IM}+\overrightarrow{IN}=\overrightarrow{IJ}\)
1) CHo tứ giác ABCD; M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
CM: \(\overrightarrow{NP}=\overrightarrow{MQ}\)
\(\overrightarrow{PQ}=\overrightarrow{NM}\)
Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, CD, AD, BC. Chứng minh: \(\overrightarrow{MP}=\overrightarrow{QN}\), \(\overrightarrow{MQ}=\overrightarrow{PN}\)
Cho ΔABC. Gọi I thỏa mãn: \(\overrightarrow{AB}+2\overrightarrow{BI}=\overrightarrow{0}\)
và J thỏa mãn: \(\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
Phân tích \(\overrightarrow{AJ}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\)