Cho diểm A nằm ngoài đường tròn tâm O. Qua A kẻ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD (C nằm giữa A và D). Gọi I là trung điểm AB , lấy điểm K đối xứng với A qua B. Chứng minh rằng tứ giác IKDC nội tiếp đường tròn
Cho đường tròn tâm O. Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB,AC. Gọi M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB,AC lần lượt ở D và E.Gọi I và K lần lượt là giao điểm của OD và OE với BC. Chứng minh tứ giác OBDK nội tiếp
Cho (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA,MB với đường tròn (O)(A,B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D. a)Chứng minh tứ giác MAOB nội tiếp b)Gọi H là giao điểm của MO và AB. Chứng minh: MC.MD=MA^2. Từ đó suy ra MC.MD=MH.MO c)Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O)
từ điểm s nằm ngoài đường tròn o kẻ hai tiếp tuyến sa sb với đường tròn o trong đó a,b là tiếp điểm gọi h là giao điểm của sa và sb. lấy một điểm I bất kì thuộc thẳng ah cắt đường tròn o tại e và f.
chứng minh rằng ehof là tứ giác nội tiếp
chứng minh rằng am x ab = af x ae
Cho đường tròn O và điểm P nằm ngoài đường tròn, qua P kẻ hai tiếp tuyến PA PB với đường tròn
A, Gọi điểm M là điểm nằm giữa A và B, đường thẳng kẻ qua M vuông góc với PA PB lần lượt tại C và D. chứng minh CM = CD.
B. Trên cung nhỏ AB, lấy điểm I, gọi H,K,L lần lượt là hình chiếu của I trên AB, PB, PA. Chứng minh IH.HL = KH.IL
Từ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B; C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại ETừ điểm A nằm ngoài đường tròn (O), vẽ hai tiếp tuyến AB và AC với đường tròn (B;C là hai tiếp điểm). Gọi H là giao điểm của OA và BC. Kẻ đường kính BK của (O). AK cắt (O) tại E.a.Chứng minh : tứ giác OBAC nội tiếp và AB^2=AE.AKb.Chứng minh : tứ giác OHEK nội tiếp và CE vuông góc HEc.Tia BK và tia AC cắt nhau tại F.Kẻ CI vu
Từ điểm K nằm ngoài đường tròn (O;R), vẽ tiếp tuyến KA và KB với đường tròn (với A, B là tiếp điểm ).
a, Chứng minh tứ giác KAOB là tứ giác nội tiếp
b, Gọi M là trung điểm của AK. Đoạn thẳng BM cắt (O) tại điểm thứ hai là N. Đường thẳng KN cắt (O) tại điểm thứ hai là D . Chứng minh AK \(//\)BD
cho một đường tròn (O;R) từ điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB và AC với đường tròn.
a, chứng minh ABOC nội tiếp.
b,D là trung điểm AC và BD cắt đường tròn tại E, AE cắt đường tròn tại F. Chứng minh AB2= AE•AF
c, i là giao điểm ao với (o) chứng minh BC=CF