\(S_{OKN}=\dfrac{1}{2}\cdot OK\cdot KN< =\dfrac{1}{2}\cdot\dfrac{OK^2+ON^2}{2}=\dfrac{R^2}{4}\)
Dấu = xảy ra khi MO=MA
\(S_{OKN}=\dfrac{1}{2}\cdot OK\cdot KN< =\dfrac{1}{2}\cdot\dfrac{OK^2+ON^2}{2}=\dfrac{R^2}{4}\)
Dấu = xảy ra khi MO=MA
+ Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường trong (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. a) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. b) Chứng minh AB.AC = AM2. c) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử ba điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.
Cho đường tròn (O;R) và dây BC cố định không qua 0. Trên tia đối của tia BC lấy điểm A khác B. Tủ A kẻ các tiếp tuyến AM, AN với đường tròn (M, N là tiếp điểm). 1) Chứng minh bốn điểm A, M, O, N cũng thuộc một đường tròn. 2) MN cắt OA tại H. Chứng minh OAI MN và AH.AO = AB.AC.
cho đường tròn (o,r) có dây B,C ko đi qua tâm. từ điểm A thuộc tia đối của tia BC, vẽ các tiếp tuyến AE, AF của đường tròn O với E,F là các tiếp điểm. gọi I là trung điểm của BC, D là giao điểm thứ 2 của FI và (O), H là giao điểm của EF và AC. chứng minh:
a) ED//AC
b) AH.AI = AB.AC
giúp mình câu b thôi
Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA (A là tiếp điểm), cát tuyến MBC (B nằm giữa M và C) và O nằm trong góc AMC. Gọi I là trung điểm của BC. Tia OI cắt cung nhỏ BC tại N, AN cắt BC tại D
a) Cm AD là phân giác của góc BAC
b) Cm MD2 = MB. MC
c) Gọi H, K là hình chiếu của N lên AB và AC. Chứng minh ba điểm H,I,K thẳng hàng
Cho đường tròn (O;R) với dây CD cố định .Điểm M thuộc tia đối của tia DC.Qua M kẻ hai tiếp tuyến MA,MB tới đường tròn (O;R) (A thuộc cung lớn CD) . Gọi I là trung điểm của CD , OM cắt AB tại H.Tia OI cắt AB tại K ,nối AB cắt CD tại E
a) C/m 4 điểm M,H,I,K cùng thuộc 1 đường tròn
b) C/m ME.MI=MA^2
c) Xác định vị trí của M để tam giác MAB đều
d) C/m KC là tiếp tuyến của đường tròn
Từ điểm A cố định nằm ngoài đường tròn (O;R), dựng các tiếp tuyến AB, AC và cát tuyến ADE với đường tròn (B,C thuộc (O), D nằm giữa A và E). Gọi I là trung điểm của DE, H là giao điểm của AO và BC.
Qua I kẻ đường thẳng song song với BE, cắt BC tại M. Chứng minh rằng DM vuông góc với BO
Cho đường tròn (O; R) và dây MN không đi qua tâm O. Kẻ đường kính AB vuông góc với MN tại E. Lấy điểm C thuộc dây MN. BC cắt đường tròn (O;R) tại K. a) Chứng minh: Tứ giác AKCE nội tiếp b) Gọi I là giao điểm của AK và MN, D là giao điểm của AC và BI. Chứng minh C cách đều 3 cạnh của tam giác DEK
Từ điểm A ở ngoài đường tròn tâm O, vẽ 2 tiếp tuyến AB và AC với (O) (B và C là các tiếp điểm). OA cắt BC tại H, cắt đường tròn (O) tại 2 điểm I và K (I thuộc cung BC nhỏ, K thuộc cung BC lớn). Vẽ đường kính CD, cát tuyến AD cắt (O) tại M. BM cắt OA tại N
Chứng minh: a) Tứ giác AMHC nội tiếp
b) N là trung điểm của AH
c) 1/AN=1/AI+1/AK
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R);(AB>AC).Gọi M là điểm chính giữa cung BC; OM cắt BC tại D; AM cắt BC tại K a)chứng minh AM là tia phân giác của BAC b)Tiếp tuyến tại A của đường tròn tâm O cắt BC tại S.Chứng minh SA²=SB.SC c)chứng minh SA=SK và S;A;O;D cùng thuộc 1 đường tròn d)Trên đường tròn tâm O đặt E sao cho SB.SC=SE² chứng minh điểm E nằm trên đường tròn (SAOD)