Bài toán hài thế
Bài toán hài thế
Cho (O;R) và dây AB<2R. Lấy M và N thuộc dây AB sao cho AM=MN=NB
a) Chứng minh AC=BD
b) So sánh AC và CD
Cho (O;R) vẽ 2 dây AB và AC sao cho AB=2R , AC= căn 2 (B thuộc cung AC) . Tính số đo cung lớn BC.
Bài: Cho đường tròn ( O ; R ) , AB là dây cung ( AB # 2R ) . Trên cung nhỏ AB lấy các điểm E , F sao cho AE = EF = FB . Bán kính OE , OF cắt AB lượt tại C và D . Chứng minh rằng AC = BD > CD .
Cho đoạn thẳng AB=13cm, trên đó lấy điểm C thuộc AB sao cho ac=9cm. Trên tia Cx vuông góc AB lấy điểm D sao cho CD=6cm. Vẽ đường tròn tâm O, đường kính AB
a) CRM: D thuộc (O) đường kính AB
b) so sánh 2 cung nhỏ BD và AD
c) gọi E là trung điểm AB, P là trung điểm BD. Tia OE cắt (O) tại Q, OP cắt (O) tại M. Tính số đo cung MQ
Cho đường tròn (O) đường kính AB và dây cung AC. Chứng minh rằng góc BAC = 1/2 sđ cung BC.
Cho đường tròn (O) đường kính AB và dây cung AC. Chứng minh rằng góc BAC = 1/2 sđ cung BC.
Giúp mình với!
Cho đường tròn (O) đường kính AB và dây cung AC. Chứng minh rằng góc BAC = 1/2 sđ cung BC.
Giúp mình với!
Cho đường tròn (O) đường kính AB và dây cung AC. Chứng minh rằng góc BAC = 1/2 sđ cung BC.
Giúp mình với!