Cho đường tròn (O), đường kính AB. Dây CD vuông góc với AB tại H. M là một điểm trên đường thẳng CD, tia AM cắt (O) tại N
a) Chứng minh tứ giác MNBH nội tiếp
b) Chứng minh MC.MD = MA.MN
c) Chứng minh AM.AN = AC2
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho (O;R) đường kính AB cố định. Gọi M là trung điểm của OB. Dây CD vuông góc AB tại M. Điểm E chuyển động trên cung lớn CD. Nối AE cắt CD tại K, nối BE cắt CD tại H.
a) CM: tứ giác BMEK nội tiếp đường tròn
b) CM: AE.AK không đổi
giúp mk với mk đang cần gấp
Cho (O), đường kính AB, vẽ dây cung CD vuông góc với OA. Lấy điểm M trên cung nhỏ BC (M<>C, M<>B), MA cắt CD tại H, trên MD lấy điểm E sao cho MC=ME. Chứng minh tứ giác ADEH nội tiếp
. Cho (O), đường kính AB, I là điểm nằm giữa 2 điểm O và A. Đường thẳng vuông góc với AB tại I cắt đường tròn tại 2 điểm C và D. Lấy điểm H thuộc cung BC nhỏ, tiếp tuyến của đường tròn (O) tại H cắt đường thẳng CD tại S
a) Nối AH cắt CD tại K. Chứng minh: T/g BHKI nội tiếp
b) C/m: SK = SH c) C/m: SC.SD = SH2
cho đường tròn(O;R) từ điểm M nằm ngoài(O) vẽ hai tiếp tuyến MA, MB( A,B là tiếp điểm). Vẽ đường kính AC của(O), MC cắt (O) tại D(D khác C). OM cắt AB tại H a) chứng minh tứ giác MAOB nội tiếp và MB^2=MC.MD b)chúng minh MO.MH=MC.MD c) CH cắt (O) tại I(Ikhacs C). chúng minh tứ giác COIM nội tiếp d) tính số đo góc MIB
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
Cho điểm C nằm trên nửa đường tròn (O) với đường kính AB sao cho cung AC lớn hơn cung BC (C≠B). Đường thẳng vuông góc với AB tại O cắt dây AC tại D. Chứng minh tứ giác BCDO nội tiếp
Cho đường tròn (O) đường kính AB, gọi I là trung điểm của OA, dây CD vuông góc với AB tại I. Lấy K tùy ý trên cung BC nhỏ, AK cắt CD tại H.
a) Chứng minh tứ giác BIHK nội tiếp
b) Chứng minh AH.AK có giá trị không phụ thuộc vị trí điểm K
c) Kẻ DN ⊥ CB , DM ⊥ AC. Chứng minh các đường thẳng MN, AB, CD đồng quy