cho đường tròn (O;R) , đường kính AB . kẻ tiếp tuyến Ax với đường tròn . trên tia Ax lấy điểm K(AK>R) . Qua k kẻ tiếp tuyến KM tới đường tròn (O). đường thẳng d vuông góc với AB tại O, d cắt MB tại E.
1.chứng minh KAOM là tứ giác nội tiếp
2. OK cắt AM tại I , chứng minh OI.OK=R^2
3 . gọi H là trực tâm tam giác KMA . tìm quỹ tích điểm H khi K chuyển động trên tia Ax
Cho (O), vẽ 2 dây cung AB và CD vuông goc với nhau trong (O). Qua A veax đường thẳng vuông góc với BC tại H và cắt đường thẳng CD tại E. Gọi F là điểm đối xứng của C qua AB. Tia À cắt BD tại K. C/m:
a) Tứ giác AHCM nội tiếp
b) ΔADE cân
c) AK\(\perp\) BD
d) H, M, K thẳng hàng
Cho tam giác ABC nhọn, AB<AC và nội tiếp (O). D là điểm đối xứng với A qua O. Tiếp tuyến với O tại D cắt BC tại E. Đường thẳng DE lần lượt cắt AB, AC tại K, L. Đường thẳng qua A song song với EO cắt DE tại F.
Đường thẳng qua D song song với EO lần lượt cắt AB, AC tại M, N. Chứng minh rằng EF tiếp xúc với đường tròn ngoại tiếp tam giác BCF.
Cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Vẽ đường kính AD, tiếp tuyến với đường tròn (O;R) tại D cắt BC tại E. Vẽ OK vuông góc với BC.(K nằm trên đường thẳng BC)
1) cm 4 điểm O,K,D,E cùng thuộc 1đường tròn
2) gọi H là điểm đối đối xứng với D qua K . cmr tứ giác BDCH là hình bình hành và H LÀ TRỰC TÂM CỦA TAM GIÁC ABC
3) gọi G là trọng tâm tam giác ABC , cmr 3 điểm H,G,O thẳng hàng
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.cho tam giác ABC nhọn nội đường tròn tâm O phân giác A cắt (O) tại M phân giác ngoài A cắt (O) tại N AH vuông với BC kẻ đg kính ok , AH giao với (O) tại I
b,góc BMC = Góc ABC + ACB
c, M, O, N thẳng hàng
d, AM là phân giác của góc HOA
e,cung BI = cung CK
f, DB.DC=DM.DA
g,MC^2=MD.MA
Cho đường tròn (O;R) có đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa O và B). Trên tia đối của tia AB lấy điểm S, SC cắt (O;R) tại điểm thứ hai là M.
a) Chứng minh: SC.MA = SA.BC
b) Gọi H là giao điểm của MA và BC; K là giao điểm của MD và AB. Chứng minh BKMH là tứ giác nội tiếp và HK // CD.
c) Chứng minh: OK.OS = R2
Cho điểm M nằm ngoài (O; R) vẽ các tiếp tuyến MA, MB với (O; R). Vẽ đường kính AC, tiếp tuyến tại C của đường tròn (O; R) cắt AB ở D. Chứng minh rằng:
a/Tứ giác MAOB nội tiếp. b/ AB.AD = 4R c/ OD vuông góc với MC
Cho tam giác MNQ vuông tại M, kẻ đường cao MH và phân giác NE (H∈NQ; E∈MQ). Kẻ MD vuông góc với NE (D∈NE).
a) chứng minh tứ giác MDHN nội tiếp trong một đường tròn. Xác định tâm O của đường tròn đó.
b)Chứng minh MD là tia phân giác của góc HMQ và OD//HB
c)Biết góc ABC = 60 và AB = a (với a > 0). Tính theo a diện tích tam giác ABC phần nằm ngoài đường tròn (O)