a) ý bạn chắc là BD cắt đường tròn đk BC tại K nhỉ.chứ ko có điểm K
Vì BC là đường kính \(\Rightarrow\angle CKB=90\)
\(\Rightarrow\angle DHC+\angle DKC=90+90=180\Rightarrow DHCK\) nội tiếp
b) Dễ dàng chứng minh được H là trung điểm DE
\(\Rightarrow\) DE và AC cắt nhau tại trung điểm mỗi đường
\(\Rightarrow ADCE\) là hình bình hành có \(DE\bot AC\Rightarrow ADCE\) là hình thoi
\(\Rightarrow CE\parallel DA\) mà \(DA\bot DB\left(\angle ADB=90\right)\Rightarrow CE\bot DB\)
mà \(CK\bot DB\left(\angle CKB=90\right)\Rightarrow C,E,K\) thẳng hàng
c) MN cắt DE tại G.Kẻ tiếp tuyến MM' của (O)
Ta có: \(EM^2+DN^2=GM^2+GE^2+GD^2+GN^2\)
\(=\left(GM^2+GD^2\right)+\left(GE^2+GN^2\right)=MD^2+EN^2\left(1\right)\)
Vì MM' là đường kính \(\Rightarrow\angle MNM'=90\Rightarrow M'N\bot MN\)
mà \(MN\bot DE\) \(\Rightarrow M'N\parallel DE\) \(\Rightarrow DNM'E\) là hình thang
mà \(DNM'E\) nội tiếp \(\Rightarrow DNM'E\) là hình thang cân
\(\Rightarrow EN=M'D\left(2\right)\)
Từ (1) và (2) \(\Rightarrow EM^2+DN^2=DM^2+DM'^2=MM'^2=4R^2\)