Cho nửa đường tròn tâm O, đường kính AD. Trên nửa đường tròn lấy điểm B, C ( B nằm trên cung AC). Gọi AC cắt BD tại E, kẻ EF vuông góc với AD(F thuộc AD). Chứng minh:
a) AB,DC,EF đồng quy
b) Tính AB.AP+CD.CP theo R của đường tròn tâm O đường kính AD
Cho ΔABC đều nội tiếp đường teonf(O,R). Đường thẳng vuông góc với AC tại A cắt (O) tại D. Tiếp tuyến tại C cắt AD tại E. Gọi M là trung điểm CE, F là giao điểm AC và BD. CMinh
a) AM là tiếp tuyến của (O)
b)3 điểm C,O,D thẳng hàng
c) BC//EF
d) EA.ED=CF2
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC
(Giúp em câu c với ạ)
Cho nửa (O) đường kính AB, C thuộc nửa (O) sao cho CA>CB. 1 điểm I thuộc (O), OI vuông góc với AB cắt dây AC tại D. Đường thẳng d là tiếp tuyến tại C của nửa (O). Đường thẳng qua D và song song với AB cắt đường thẳng d ở điểm E.
a) Chứng minh: Tứ giác BCDO nội tiếp và AC.AD=AO.AB
b) Chứng minh: AC song song với OE
c) Gọi H là chân đường cao hạ từ C đến AB. Tìm vị trí của điểm C để HD vuông góc với AC
Cho nửa đường tròn (O), đường kính AB. Từ Avà B kẻ hai tiếp tuyến Ax, By với (o). Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến với (O) cắt Ax, By lần lượt ở C và D. AD cắt BC tại N. Gọi E, F lần lượt là giao điểm của OD với (O) và MB. Chứng minh goac DAE bằng góc FAE.
Cho nửa đường tròn (O) đường kính AB. Gọi C và D là hai điểm trên nửa đường tròn (C thuộc cung AD). AC và BD cắt nhau tại E, AD cắt BC tại F. C/minh:
a, Tứ giác ECFD nội tiếp
b, \(\widehat{AEF}=\widehat{BAC}\)
Cho tam giác ABC nhọn có AB<AC nội tiếp (O), gọi AD là đường kính của (O), tiếp tuyến tại D của (O) cắt BC tại M, đường thẳng MO cắt AB và AC lần lượt tại E, F
a) Chứng minh : MD2=MC.MB
b) Gọi H là trung điểm của BC, qua B vẽ đường thẳng song song với MO đường thẳng này cắt AD tại P. Chứng minh đường tròn ngoại tiếp tam giác BHD đi qua P
c) Chứng minh O là trung điểm của EF
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
1. Cho đường tròn
(O;3cm) và điểm A thỏa mãn OA=5cm. Kẻ các tiếp tuyến AB,AC với đường tròn. Gọi H là giao điểm của AO với BC.
a) Tính OH.
b) Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB,AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.