Cho nửa đường tròn tâm O đường kính AB = 2R. Trên nửa đường tròn (O) lấy điểm M sao cho MB = R. Vẽ các tiếp tuyến Ax, By (Ax và By cùng thuộc một nửa mặt phẳng bờ AB có chứa điểm M). Tiếp tuyến tại M của đường tròn (O) cắt Ax, By lần lượt tại C và D.
a) CM tứ giác OBDM nội tiếp
b) BC cắt đường tròn tại F ( F khác B) . Đường thẳng qua O vuông góc với BC cắt By tại E . CM EF là tiếp tuyến của đường tròn (O).
c) Gọi K là giao điểm của OE và BC . CM KO. KE = KF.KB và đường trung trực của đoạn thẳng MK đi qua điểm D
a: Xét tứ giác OBDM có
góc OBD+góc OMD=180 độ
=>OBDM là tư giác nội tiếp
c: Xét ΔKOB và ΔKFE có
góc KOB=góc KFE
góc OKB=góc FKE
=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE
=>KO*KE=KB*KF