Cho tam giác ABC vuông tại A(AB>AC) có đường cao AH (H thuộc BC).Trên nửa mp bờ BC chứa điểm A,vẽ nửa đường tròn(O1) đường kính BH cắt AB tại I (I khác B) và nửa đường tròn (O2) đường kính HC cắt AC tại K (K khác C).CM
a) Tứ giác BIKC là tứ giác nội tiếp
b) IK là tiếp tuyến chung của 2 nửa đtron (O1) và (O2)
Giúp mình với ạ,mình cảm ơn rất nhiềuuuuuu
Cho đường tròn tâm O bán kính R, hai điểm C và D thuộc đường tròn, B là điểm chính giữa cung nhỏ CD . Kẻ đường kính BA, trên tia đối của BA lấy điểm S , nối S với C cắt (O) tại M , MD cắt AB tại K, MB cắt AC tại H.
a) Chứng minh góc BMD bằng góc BAC. Từ đó suy ra tứ giác AMHK nội tiếp
b) Chứng minh HK // CD
. Cho (O), đường kính AB, I là điểm nằm giữa 2 điểm O và A. Đường thẳng vuông góc với AB tại I cắt đường tròn tại 2 điểm C và D. Lấy điểm H thuộc cung BC nhỏ, tiếp tuyến của đường tròn (O) tại H cắt đường thẳng CD tại S
a) Nối AH cắt CD tại K. Chứng minh: T/g BHKI nội tiếp
b) C/m: SK = SH c) C/m: SC.SD = SH2
Cho nửa đường tròn (O) đường kính AB I thuộc OA, M thuộc (O), Ax, By là các đường tiếp tuyến của đường tròn, từ M kẻ đường thẳng IM cắt Ax, By lần lượt tại D và I. Chứng minh rằng các tứ giác AIMD, BIME là tứ giác nội tiếp. Góc ^DIE =90° ∆AIM đồng dạng ∆EIM
cho nửa đường tròn (o) đường kính AB, điểm C thuộc nửa đường tròn ( AC > BC). Gọi D là một điểm trên bán kính OA, qua D kẻ đường vuông góc với AB cắt AC và BC lần lượt tại E và F. Tiếp tuyến của nửa đường tròn tại C cắt È ở I. Chứng minh
a) Tứ giác BDEC và ADCF là các tứ giác nội tiếp được đường tròn.
b) I là trung điểm của EF
c) AE.EC = DE.EF
Cho nữa đường tròn (O;R) đường kính AB. Lấy điểm C là điểm chính giữa của cung AB, N là trung điểm của dây cung CB. Đường thẳng AN cắt nữa đường tròn (O) tại M. Từ C kẻ CI vuông góc với AM tại I.
a) Chứng minh tứ giác ACIO nội tiếp.
b) Chứng minh góc MOI = góc CAI.
c) Tính bán kính đường tròn ngoại tiếp tam giác IOM theo R.
Cho đường tròn (O) đường kính AB, Ax, By là hai tiếp tuyến của (O) tại các tiếp điểm A, B. Lấy điểm M bất kì trên nửa đường tròn (( M thuộc cùng 1 nửa mặt phẳng bờ AB chứa Ax, By), tiếp tuyến tại M của (O) cắt Ax, By lần lượt tại C và D a) Chứng minh: Tứ giác AOMC nội tiếp b) Chứng minh: AM.OD = BM.OC c) Giả sử BD = R 3 , tính AM d) Nối OC cắt AM tại E, OD cắt BM tại F, kẻ MN AB (NAB), chứng minh đường tròn ngoại tiếp NEF luôn đi qua 1 điểm cố định
Cho tam giác ABC nhọn AB <AC , đường cao AH .M,N là hình chiếu của H trên AB,AC . MN cắt BC tại D . Trên nửa mp bờ BC chứa A vẽ nửa đường tròn đường kính CD . Qua B kẻ đường vuông góc với CD cắt nửa đường tròn tại E. Gọi O là tâm đường tròn ngoại tiếp tam giác MNE . Cm: OE vuông góc DE