a) Xét (O) có
ΔABC nội tiếp đường tròn(A,B,C∈(O))
AB là đường kính của (O)
Do đó: ΔABC vuông tại C(Định lí)
⇒BC⊥AC tại C
⇒BC⊥AE tại C
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAE vuông tại B có BC là đường cao với cạnh huyền AE, ta được:
\(AC\cdot AE=AB^2\)
mà AB không đổi(Do AB là đường kính của (O))
nên \(AC\cdot AE\) không đổi(đpcm)
b) Xét (O) có
ΔADB nội tiếp đường tròn(A,D,B∈(O))
AB là đường kính của (O)(gt)
Do đó: ΔADB vuông tại D(Định lí)
⇒BD⊥AD tại D
⇒BD⊥AF tại D
Xét ΔABD vuông tại D và ΔAFB vuông tại B có
\(\widehat{DAB}\) chung
Do đó: ΔABD∼ΔAFB(g-g)
⇒\(\widehat{ABD}=\widehat{AFB}\) (hai góc tương ứng)
hay \(\widehat{ABD}=\widehat{DFB}\)(đpcm)
cho nua duong tron tam o duong kinh AB , ke tiep tuyen Bx va lay hai diem C va D thuoc nua duong tron , cac tia AC va AD cat Bx lan luot o E, F ( F o giua B va E) ,1, chung minh rang ABD=DFB ,2, chung minh rang CEFD la tu guac noi tiep /