Cho nửa đường tròn (O), đường kính AB = 2R. Trên cùng một nửa mặt phẳng bờ AB kẻ 2 tiếp tuyến Ax, By với nửa (O). Lấy M bất kì trên nửa (O). Kẻ tiếp tuyến thứ ba với nửa đường tròn tại M cắt Ax, By thứ tự ở C, D. Gọi giao điểm của BM và Ax là E. Gọi H là hình chiếu của M trên AB, K là giao điểm của BC và MH.
a) Tìm vị trí điểm M để \(S_{ACDB}\) nhỏ nhất
b) Chứng minh: 3 đường thẳng BC, AD, MH đồng quy.
c) Chứng minh: OE vuông góc AD.
Cho nửa đường tròn (O), đường kính AB = 2R. Trên cùng một nửa mặt phẳng bờ AB kẻ 2 tiếp tuyến Ax, By với nửa (O). Lấy M bất kì trên nửa (O). Kẻ tiếp tuyến thứ ba với nửa đường tròn tại M cắt Ax, By thứ tự ở C, D.
a) Kẻ đường cao MH của tam giác AMB, MH cắt BC ở K. Chứng minh: K là trung điểm của MH.
b) Chứng minh: 3 đường thẳng BC, AD, MH đồng quy.
c) Chứng minh: OE vuông góc AD.
Cho nửa đường tròn đường kính AB vẽ tiếp tuyến Ax, By với nửa đường trong (Ax, By nằm cùng 1 phía của đt AB). Gọi C là 1 điểm tùy ý trên nửa đường tròn, kẻ tiếp tuyến với nửa đường tròn tại C cắt Ax, By tại M và N. Gọi H là giao điểm của AN và BM. Nối CH kéo dài cắt AB tại K. CMR CH vuông góc AB và CH=HK
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) \(MA^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) MA\(^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nữa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý trên nửa đường tròn ( M: ≠ A ; B) . Kẻ hai tia tiếp tuyến Ax và By với nửa đường tròn . Q ua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D.
a, Chứng minh : CD = AC +BD và góc COD = 90 độ .
b, Chứng minh : AC.BD=R^2 .
Anh em giúp mình với mai mình kiểm tra rồi nhé.
C, OC cắt AM tại E , OD cắt BM tại F . Chứng minh : EF = R.
Cho nửa đường tròn (O) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn vẽ hai tiếp tuyến Ax và By với (O). Lấy M bất kì trên (O). Kẻ tiếp tuyến thứ 3 với nửa đường tròn tại M cắt Ax và By tại C và D.
1) CMR: Tam giác COD là tam giác vuông và tích AC.BD không phụ thuộc vào vị trí của M.
2) AM cắt OC tại E, BM cắt OD tại F. Tứ giác MÈO là hình gì?
3) Tứ giác AEFO; ADFB là hình gì?
4)CMR: EC.EO + FO.FD = R2
5) CMR: AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD.
6) Xác định vị trí của M để chu vi; diện tích hình thang ACDB đạt giá trị nhỏ nhất.
7) Tia BM cắt Ax tại K. CMR: C là trung điểm AK.
8) Kẻ đường cao MH của tam giác AMB. MH cắt BC tại N; CMR: N là trung điểm MH và A, N, D thẳng hàng.
cho nửa đường tròn tâm O , đường kính AB =2R và K là một điểm tùy ý trên nửa đường tròn ( K khác A và B). kẻ hai tiếp tuyến Ax và By tại M với nửa đường tròn . Qua K kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại M và H. a/cm: MH=AM+BH và AK//OH b/ cm: AM.BH=R2 c / đường thẳng AB và MH cắt nhau tại E.cm:ME.HK=MK.HE