Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngưu Kim

Cho nửa đường tròn (O), đường kính AB = 2R. Trên cùng một nửa mặt phẳng bờ AB kẻ 2 tiếp tuyến Ax, By với nửa (O). Lấy M bất kì trên nửa (O). Kẻ tiếp tuyến thứ ba với nửa đường tròn tại M cắt Ax, By thứ tự ở C, D.
a) Kẻ đường cao MH của tam giác AMB, MH cắt BC ở K. Chứng minh: K là trung điểm của MH.
b) Chứng minh: 3 đường thẳng BC, AD, MH đồng quy.  
c) Chứng minh: OE vuông góc AD.

Akai Haruma
22 tháng 12 2021 lúc 8:19

Lời giải:
a.

$AC, BD$ cùng vuông góc với $AB$ (do là tiếp tuyến)

$MH\perp AB$ (gt)

$\Rightarrow AC\parallel MH\parallel BD$. Áp dụng định lý Talet:

$\frac{MK}{BD}=\frac{MC}{CD}$

$\Rightarrow MK=\frac{MC.BD}{CD}(1)$

$\frac{HK}{AC}=\frac{BK}{BC}=\frac{MD}{DC}$

$\Rightarrow HK=\frac{AC.MD}{DC}(2)$

Theo tính chất 2 tiếp tuyến cắt nhau thì $AC=MC; BD=MD(3)$

Từ $(1); (2); (3)\Rightarrow HK=MK$ nên $K$ là trung điểm $MH$

b. Gọi $K'$ là giao của $AD$ với $MH$

Tương tự như câu a, áp dụng định lý Ta let:

$\frac{MK'}{CA}=\frac{DM}{DC}$

$\Rightarrow MK'=\frac{AC.DM}{DC}$
$\frac{HK'}{DB}=\frac{AK'}{AD}=\frac{CM}{CD}$

$\Rightarrow HK'=\frac{BD.CM}{CD}$

$\Rightarrow HK'=MK'$ nên $K'$ là trung điểm $MH$

$\Rightarrow K\equiv K'$ nên $BC, AD, MH$ đồng quy.

c. Không có dữ liệu điểm $E$. 

 

Akai Haruma
22 tháng 12 2021 lúc 8:20

Hình vẽ:

Akai Haruma
22 tháng 12 2021 lúc 8:21

Hình vẽ:


Các câu hỏi tương tự
Ngưu Kim
Xem chi tiết
Nam
Xem chi tiết
Đỗ Công Tuấn
Xem chi tiết
Phạm Quỳnh Anh 9a13-
Xem chi tiết
Huỳnh Nguyệt Thi
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
nguyễn phương thùy
Xem chi tiết
MInemy Nguyễn
Xem chi tiết
Ngưu Kim
Xem chi tiết