Bài 6: Tính chất hai tiếp tuyến cắt nhau

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Siêu Văn Nhân

Cho nửa đường tròn (O) đường kính BC và điểm A nằm trong nửa đường tròn (A\(\ne\) B,C). Kẻ AH\(\perp\)BC (H\(\in\)BC). Trên nửa mặt phẳng bờ BC chứa A vẽ 2 nửa đường tròn , đường kính HB và HC. Chúng cắt AB và AC ở E và F.

a, Chứng Minh: AE.AB=AF.AC

b, Chứng Minh: EF là tiếp tuyến của đường tròn đường kính BH

c, Gọi I và K là 2 điểm của H qua AB và AC. Chứng Minh I,A,K thẳng hàng.

d, IK cắt tiếp tuyến kẻ từ B của (O) tại M. Chứng Minh: MC,AH,EF đồng qui.

- Mọi người ơi giúp em với ! EM Cảm Ơn Nhiều Ạ !

Cold Wind
28 tháng 6 2018 lúc 8:34

a) * Ta có: BEH^ = 90o (góc nt chắn nửa (BH)) => HE _|_ AB

tam giác AHB vuông tại H, đường cao HE:

AE* AB = AH^2 (1)

* HFC^ = 90o (góc nt chắn nửa (HC)) => HF _|_ AC

tam giác AHC vuông tại H, đường cao HF:

AF* AC = AH^2 (2)

Từ (1) và (2) => AE* AB = AF* AC

b) * Ta có: BAC^ = 90o (góc nt chắn nửa (BC)) => EAF^ = 90o

mà AEH^ = 90o (HE _|_ AB) và AFH^ = 90o (HF _|_ AC)

=> tứ giác AEHF là hình chữ nhật => tứ giác AEHF nội tiếp

* HEF^ = HAF^ (cùng chắn cung HF của (AEHF))

HAF^ = ABC^ (cùng phụ BAH^)

=> HEF^ = ABC^ => EF là tiếp tuyến (BH)

c) Ta sẽ chứng minh AIH^ = KAC^

Ta có: + KAC^ = HAC^ (tính chất đối xứng)

HAC^ = AHE^ (sole trong)

=> KAC^ = AHE^

+ AIH^ = AHE^ (tính chất đối xứng)

Vậy AIH^ = KAC^ (cùng bằng AHE^)

mà AC // IH (tứ giác AEHF là hình chữ nhật)

=> AIH^ và KAC^ đồng vị => I, A, K thẳng hàng

d) không biết!


Các câu hỏi tương tự
Tinas
Xem chi tiết
Lê Thị Mai
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
illumina
Xem chi tiết
Nhạt Nhẽo
Xem chi tiết
ádsdssasads
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hoài An
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết