a: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ(1) và (2) suy ra góc COD=1/2*180=90 độ
b: CD=CM+MD
=>CD=AC+BD
c: AC*BD=MD*MC=MO^2=R^2
a: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ(1) và (2) suy ra góc COD=1/2*180=90 độ
b: CD=CM+MD
=>CD=AC+BD
c: AC*BD=MD*MC=MO^2=R^2
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Cho nửa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý nửa đường tròn ( M khác A;B ) . Kẻ hai tia tuyến Ax và By với đường tròn .Qua M kẻ tia tuyến thứ ba lần lượt cắt Ax và B tại C và D .
a, Chứng minh : CD =AC +BD và góc COD =90 độ.
b, Chứng minh : AC BD=R^2
C,OC cắt AM tại E ,OD cắt BM tại F . Chứng minh : EF=R
cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng bờ AB chưa nửa đường tròn vẽ tiếp tuyến Ax và By . Điểm M thuộc (O) sao cho tiếp tuyến tại M cắt Ax, By lần lượt tại C, D.
a) Cm: CD= AC+BD
b) Cm: OC vuông AM
c) Gọi E là giao điểm AM và Oc, F là giao điểmcủa BM và OD . Tứ giác MÈO là hình gì? Tại sao?
Cho nữa đường tròn tâm O , đường kính AB=2R , M là một điểm tùy ý trên nửa đường tròn ( M: ≠ A ; B) . Kẻ hai tia tiếp tuyến Ax và By với nửa đường tròn . Q ua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D.
a, Chứng minh : CD = AC +BD và góc COD = 90 độ .
b, Chứng minh : AC.BD=R^2 .
Anh em giúp mình với mai mình kiểm tra rồi nhé.
C, OC cắt AM tại E , OD cắt BM tại F . Chứng minh : EF = R.
Cho đường tròn (O), đường kính AB=2R. Trên tâm O lấy điểm M(MA<MB). Tiếp tuyến tại M (O) cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C, D.CM:
a) CM CD=AC+BD
b)Vẽ đường thẳng MB cắt AC tại E và vẽ MH vuông AB tại H. CM OC//MB và ME.MB=AH.AB
c)HM là tia phân giác của góc CHD
cho nửa đường tròn tâm O , đường kính AB =2R và K là một điểm tùy ý trên nửa đường tròn ( K khác A và B). kẻ hai tiếp tuyến Ax và By tại M với nửa đường tròn . Qua K kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại M và H. a/cm: MH=AM+BH và AK//OH b/ cm: AM.BH=R2 c / đường thẳng AB và MH cắt nhau tại E.cm:ME.HK=MK.HE
Cho nửa đường tròn (o), đường kính AB. Hai tiếp tuyến Ax, By trên cùng 1 mặt phẳng bờ AB chứa nửa đường tròn (o). Tiếp tuyến tại điẻm M của nửa đường tròncắt Ax tại C và By tại D
a) COD là tam giác gì?
b) C/m: CD=AB+BD
c) AM và BM cắt OC và OD lần lượt tại E và F. Tứ giác OEMF là hình gì?
d) Gọi I là giao điểm 2 đường chéo OM và EF của tứ giác OEMF. Khi M thay đổi trên nửa đường tròn (o) thì điểm I chuyển động trên đường nào? Vì sao?
e) Xác định vị trí của M để tứ giác OEMF là hình vuông? Tính diện tích của hình vuông này. Cho biết AB=6cm
Cho nữa đường tròn tâm Ở, đường kính AB=2R . Trên cùng mặt phẳng bờ AB chứa nữa đường tròn vẽ tiếp 2 tiếp tuyến AC,By . Lấy 1 điểm M thuộc (O), tiếp tuyến tại M cắt Ax,lần lượt tại C,D a)CM:AB+BD=CD và AC .BD ko đối b)CM:AB là tiếp tuyến đường tròn đường kính CD c)Cho AC=R/2.Tính MA,MB,MC,MD