Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và D là 1 điểm tùy ý thuộc cung BC không chứa điểm A.Gọi I,K lần lượt là điểm đối xứng của D trên AB,AC a.CM:KI=2AD.sinBAC b.Xác định vị trí của điểm D để tam giác AKI có chu vi lớn nhất
cho nửa đường tròn (O) có đường kính AB . M là điểm nằm bên ngoài đường tròn sao cho MA , MB cắt nửa đường tròn lần lượt tại N , P a) chứng mính BN ⊥ MA , AP ⊥ MB b) Gọi K là giao điểm của BN và AP . Chứng minh MK ⊥ AB
2/ Cho tam giác ABC nhọn nội tiếp trong đường tròn (O;R). Gọi H là giao điểm của 2 đường cao BE và CF.
a) C/m 4 điểm A,E,H,F cùng thuộc một đường tròn. Xác định tâm K của đường tròn đi qua 4 điểm A,E,H,F
b) C/m \(\widehat{KEI}\) =90o
Cho tam giác nhọn ABC nội tiếp đường tròn (O). M là điểm bất kì thuộc cung BC không chứa A. Gọi D, E theo thứ tự là các điểm đối xứng với M qua AB, AC. Tìm vị trí của M để DE có độ dài lớn nhất.
Giup hộ mình
Cho △ABC có ba góc nhọn và đường cao là AH. Gọi M,N lần lượt là hình chiếu của H trên AB,AC .
a) Chứng tỏ bốn điểm A,M,H,N cùng nằm trên một đường tròn xác định. Xác định tâm O của đường tròn này.
b)Chứng minh rằng △AMN và △ABC đồng dạng.
c)Chứng tỏ tiếp tuyến tại N của (O) đi qua trung điểm HC.
d) Trường hợp góc ABC =60: góc ACB= 45 và BC = 2a. Tính diện tích △ABC.
Cho đường tròn tâm O đường kính AB; trên nửa đường tròn lấy điểm C sao cho AC>AB, qua C dựng đường thẳng vuông góc với OC cắt đường thẳng AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vuông góc với CD ( K thuộc CD); đường kính CH cắt đường thẳng BK tại E. a) Chứng minh 4 điểm C,H,B,K cùng thuộc 1 đường tròn. b) Cm KH//AC. c) Cm BH.AD=AH.BD
Cho tam giác MNP vuông tại M , NP a2 . Trên cạnh MN lấy điểm A ( A khác M , A khác N ). Qua trung điểm I của NP vẽ tia Ix vuông góc với IA . Tia Ix cắt đường thẳng MP tại B . Xác định vị trí của điểm A để độ dài đoạn AB nhỏ nhất.
Cho tam giác ABC vuông tại A,có M là trung điểm của BC. a) chứng minh các điểm A,B,C cùng nằm trên đường tròn M b) biết AB =6cm,BC=8cm.Tính bán kính đường
Cho tam giác đều ABC cạnh bằng 6cm, hai đường cao BD và CE. Gọi G là giao điểm của BD và CE.
Chứng minh bốn điểm A, E,D, G cùng thuộc một đường tròn. Xác định tâm và tính bán kính R của đườg tròn
này.