Đề sai. Với $n=5$ thì $(5n+2)^2-4n^2$ đâu có chia hết cho 5 đâu bạn.
Đề sai. Với $n=5$ thì $(5n+2)^2-4n^2$ đâu có chia hết cho 5 đâu bạn.
Cho n thuộc Z, CMR:
a) ( 5n+2 )2 - 4n2 chia hết cho 5
b) n3 - n chia hết cho 6
Bài 3: CMR: a) (n +3)^2 – (n -1)^2 chia hết cho 8 (với n Î Z )
b) n^5 – 5n^3 + 4n chia hết cho 120 (với n thuộcZ )
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
Chứng minh rằng:
a) (5n - 2)2 - (2n - 5)2 luôn chia hết cho 21 với n thuộc Z
b) Hiệu các bình phương của hai số lẻ liên tiếp chia cho 8
CMR
(2n-3) (3n-2) - (3m-2) (2n-3) chia hết cho 5 với m,n thuộc Z
Tìm n thuộc Z để \(2n^2+5n-1\) chia hết cho 2n - 1
a) CMR:\(5x^3+15n^2+10n\)
Luôn chia hết cho 30 với mọi n thuộc Z
b) CMR: \(n^3\left(n^2-7\right)-36n\)
Chia hết cho 105 với mọi x thuộc Z
CMR :
a) vn thuộc z thì n ( n+5)- ( n -3 ) ( n+2) chia hết cho 6
b ) ( n-1 )(n+1)-(n-7)(n-5) chia hết cho 4 và 3
giúp mk nha
mk đang cần gấp
CM:
a) (2n+3)2-9 chia hết cho 4 với n thuộc Z
b) n2(n+1)+2n(n+1) chia hết cho 6 với n thuộc Z.
c) n(2n-3)-2n(n+1) chia hết cho 5 với n thuộc Z.