Ta nhận thấy : \(\frac{1}{n^2\left(n+1\right)^2}< \frac{2n+1}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\forall n>1,n\in N\)
Sửa đề nha : 1/4+1/36+... mới làm đc
\(\frac{1}{4}< 1-\frac{1}{4}\)
\(\frac{1}{36}< \frac{1}{4}-\frac{1}{9}\)
...Cộng hết lại đc
\(VT< 1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)\(\).Ta có N>1 nên
Hình như ko đc...Xem lại đề
Chứng minh: \(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2n\left(n+1\right)}\)
Ta có: \(\frac{1}{n^2+\left(n+1\right)^2}=\frac{1}{n^2+n^2+2n+1}=\frac{1}{2n^2+2n+1}\)
\(\Rightarrow\frac{1}{2n^2+2n+1}< \frac{1}{2n^2+2n}=\frac{1}{2n\left(n+1\right)}\)
Thay vào bài toán:
\(\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}=\frac{1}{1^2+\left(1+1\right)^2}+\frac{1}{2^2+\left(2+1\right)^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2n+\left(n+1\right)}\)
\(=\frac{1}{2}.\left[\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n.\left(n+1\right)}\right]\)
\(=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n-1}\right)\)
\(=\frac{1}{2}-\frac{1}{2\left(n+1\right)}< \frac{1}{2}\left(đpcm\right)\)