Gọi \(d=ƯCLN\left(6n+5;4n+3\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮d\\4n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+10⋮d\\12n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(6n+5;4n+3\right)=1\)
\(\Leftrightarrowđpcm\)
Gọi \(ƯCLN\left(6n+5,4n+3\right)=d\left(d\in N\right)\)
Do đó:\(\left\{{}\begin{matrix}6n+5⋮d\\4n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n+10⋮d\\12n+9⋮d\end{matrix}\right.\)
Vì 9;10 là 2 số nguyên tố cùng nhau nên \(1⋮d\)
=>d=1
=>6n+5 và 4n+3 là 2 số nguyên tố cùng nhau(đpcm)