Sửa đề: CMR: \(7.5^{2n}+12.6^n⋮19\)
Giải:
Đặt \(A\left(n\right)=\) \(7.5^{2n}+12.6^n.\) Với \(n=0\) ta có \(A\left(0\right)=19\) \(⋮19\)
Giả sử \(A\left(n\right)\) \(⋮19\) với \(n=k\) nghĩa là: \(A\left(k\right)=7.5^{2k}+12.6^k⋮19\)
Ta phải chứng minh \(A\left(n\right)⋮19\) với \(n=k+1\)
Ta có: \(A\left(k+1\right)=7.5^{2\left(k+1\right)}+12.6^{k+1}\)
\(=7.5^{2k}.5^2+12.6^n.6=7.5^{2k}.6+7.5^{2k}.19\) \(+\) \(12.6^n.6\)
\(=6.A\left(k\right)+7.5^{2k}.19⋮19\)
Vậy theo phương pháp quy nạp thì \(7.5^{2n}+12.6^n\) \(⋮19\) đúng với mọi số tự nhiên (Đpcm)
Cách này đỡ phức tạp :
VT=7(25^n-6^n)+19*6^n
Dễ thấy 25^n-6^n chia hết (25-16) = 19
Suy ra (đpcm).
[ Bn sửa lại đề bn nhé =)) ]
Ta có: 7.5^2n + 12.6^n = 7.25^n + 12.6^n = 7.25^n - 7.6^n + 19.6^n
= 7(25^n - 6^n) + 19.6^n = 7(25 - 6)[X] + 19.6^n
= 7.19.[X] + 19.6^n chia hết cho 19
Học tốt !Lương Nhất Chi
tớ làm thế này được không :
7*52n + 12*6n = 7*25n + 12*6n = ( 7+12 )*( 25n * 6n ) =19*.... chia hết cho 19