Cho hai số tự nhiên A và B trong đó A chỉ gồm 2n chữ số 1 , số B chỉ gồm n chữ số 4.CMR A+B+1 là 1 số chính phương
CMR : 2n-1 chia hết cho 7 khi và chỉ khi n chia hết cho 3(n thộc N*)
Cmr với mọi số nguyên n thì:
A=(2.n+1).(n^2-3.n-1)-2n^3+1 chia hết cho 5
Tìm số nguyên n sao cho:
a, n2 + 2n - 4 chia hết cho 11
b, 2n3 + n2 + 7n +1 chia hết cho 2n - 1
c, n3 - 2 chia hết cho n - 2
d, n3 - 3n2 - 3n - 1 chia hết cho n2 + n + 1
e, n4 - 2n3 + 2n2 - 2n + 1 chia hết cho n4 - 1
Câu 1: Chứng minh rằng:
A = 13 + 23 + 33 + ... + 1003 chia hết cho B = 1 + 2 + 3 + ... + 100
Câu 2: Tìm số dư trong phép chia khi chia 2100 cho 125
Câu 3: Tìm n ∈ N để:
a) n2 + 2n - 4 chia hết cho 11
b) 2n3 + n2 + 7n + 1 chia hết cho 2n - 1
c) n3 - n2 + 2n + 7 chia hết cho n2 + 1
Tìm số nguyên n sao cho:
a, \(n^2+2n-4\) chia hết cho 11
b, \(2n^3-n^2+7n+1\) chia hết cho 2n - 1
1.Cmr 46n+296.13n chia hết cho 1947 với n >0,n thuộc N,n lẻ
2.Cmr 22n(22n+1-1)-1 chia hết cho 9 với n thuộc N*
a/ Tìm số a để đa thức 2x³ -3x² + x + a chia hết cho đa thức x + 2 . . b/ Tìm n a/ Tìm số a để đa thức 2x³ 3x² + x + a chia hết cho đa thức x + 2 b/ Tìm n e Z để 2n² – n + 2 chia hết cho 2n +1\(\in\) Z để 2n² – n + 2 chia hết cho 2n +1
Câu 1: Cho n là số nguyên không chia hết cho 3. CMR: P=3^2n+3^n +1 chia hết cho 13.