Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Lưu ly

Cho mọi số tự nhiên n\(\ge\)2

A=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\) với \(\frac{1}{2}\)

Trình bayd rõ ràng

soyeon_Tiểubàng giải
10 tháng 10 2016 lúc 16:32

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)

\(A< \frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(A< \frac{1}{4}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< \frac{1}{4}.\left(2-\frac{1}{n}\right)\)

\(A< \frac{1}{4}.2=\frac{1}{2}\left(đpcm\right)\)

Lê Nguyên Hạo
10 tháng 10 2016 lúc 15:55

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)

\(\Rightarrow A=\frac{1}{\left(1.2\right)^2}+\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+....+\frac{1}{\left(2n\right)^2}\)

\(\Rightarrow A=\frac{1}{1^2.2^2}+\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+...+\frac{1}{2^2.n^2}\)

\(\Rightarrow A=\frac{1}{1}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+...+\frac{1}{2^2}.\frac{1}{n^2}\)

\(\Rightarrow A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2^2}+\frac{1}{n^2}\right)\)

Có: \(1+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2^2}+\frac{1}{n^2}\) > 1

Rồi bạn tự tính tiếp nhé.


Các câu hỏi tương tự
Huỳnh Lưu ly
Xem chi tiết
Bich Phan
Xem chi tiết
Huỳnh Lưu ly
Xem chi tiết
Hoàng Thị Thu Thảo
Xem chi tiết
Nguyễn Phương Nhi
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
 Quỳnh Anh Shuy
Xem chi tiết
Trần Ngọc An Như
Xem chi tiết
Lê Huyền Linh
Xem chi tiết